
Modeling mind-wandering: a tool to better understand distraction

Marieke K. van Vugt (m.k.van.vugt@rug.nl) & Niels A. Taatgen (n.a.taatgen@rug.nl)

Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen
Nijenborgh 9, 9747 AG Groningen, The Netherlands

J

´

er

ˆ

ome Sackur (jerome.sackur@gmail.com) & Mika

¨

el Bastian (bastian.mikael@gmail.com)

Ecole Normale Superieure, Paris, France.

Abstract

When we get distracted, we may engage in mind-wandering, or
task-unrelated thinking, which impairs performance on cogni-
tive tasks. Yet, we do not have cognitive models that make this
process explicit. On the basis of both recent experiments that
have started to investigate mind-wandering and introspective
knowledge from for example meditators, we built a process
model of distraction in the form of mind-wandering. We then
tested the model by predicting performance on tasks used in
mind-wandering studies. We showed that we could both pre-
dict task performance as well as the participants’ responses to
questions about what they were thinking about. This improved
understanding of mind-wandering could be used in the future
to revise our models of when, how, and why distraction occurs.
For example, our model could be used to examine how the ef-
fect of distraction on task performance depends on the type of
mind-wandering (e.g., rumination versus day-dreaming).
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Introduction

Reports suggest that we spend more than half of our wak-
ing time mind-wandering (Killingsworth & Gilbert, 2010).
While it is known that mind-wandering also affects task per-
formance, there are very few studies that examine mind-
wandering experimentally, and models of this cognitive pro-
cess are even more scarce. In fact, most studies consider these
distraction processes as some form of mental noise. However,
it is likely that mind-wandering is not a unitary process but is
a collection of different processes. For example, rumination
about ones’ fears may be very different from daydreaming
about an upcoming beach trip. It will be much more dif-
ficult to disengage from the rumination than from the day-
dreaming, and rumination will activate a much smaller set of
memories more strongly. Differentiating between the effects
of these types of mind-wandering requires an explicit model.

Mind-wandering refers to processes of task-unrelated
thinking (see Smallwood & Schooler, 2014, for a review).
This is a process that is not triggered by external distrac-
tors, but rather triggered by the mind itself. Recent studies
have started to investigate mind-wandering experimentally by
means of various tasks in which people are known to zone
out such as slow sustained attention tasks (e.g., Cheyne, Car-
riere, & Smilek, 2009) or reading a boring text (e.g., McVay
& Kane, 2012). To assess mind-wandering, experimenters
may insert thought probes into their task, which ask the par-
ticipants about whether they were on-task or off-task (e.g.,
Cheyne et al., 2009). It has been found that there are more
errors and response time variability increases during self-
reported mind-wandering (Bastian & Sackur, 2013).

Mind-wandering may–depending on circumstances–be ei-
ther adaptive or non-adaptive. While mind-wandering dur-
ing a task that requires continuous cognitive control may
be problematic, mind-wandering during a task that does not
require continuous attention may in fact contribute to im-
proved problem-solving and creativity, since it frequently in-
volves prospective memory (Baird et al., 2012). At present,
there are several theories of mind-wandering that have em-
phasized different aspects of this process. The executive fail-
ure theory states that mind-wandering occurs out of a fail-
ure to focus attention on relevant information (McVay &
Kane, 2009), while the perceptual decoupling theory states
that mind-wandering is primarily a process of decoupling
from the external environment, such that it can be devoted to
internal processes (Smallwood, Beach, Schooler, & Handy,
2008; Smallwood et al., 2011). Evidence for perceptual de-
coupling comes from studies that have found that the ampli-
tude of evoked potentials is reduced during states of task-
unrelated thought (Smallwood et al., 2008). In addition,
the pupil responds less to presented stimuli during states
of mind-wandering (Smallwood et al., 2011). Instead of
processing perceptual stimuli, the brain appears to be en-
gaged in episodic processing during the periods of distrac-
tion (Andrews-Hanna, Smallwood, & Spreng, 2014). Exec-
utive failure theory is based on studies that relate cognitive
control abilities to the ability to resist mind-wandering (Kane
& McVay, 2012). Alternatively, it has been suggested that
mind-wandering results from failures in meta-cognition, the
ability to observe ones’ thoughts (Fox & Christoff, 2014).

None of the above-mentioned theories has been formalized
in computational models. Closest related to studying mind-
wandering come models of distraction and fatigue. For ex-
ample, Gunzelmann, Gross, Gluck, and Dinges (2009) inves-
tigated the effects of fatigue on performance on a monotonous
psychomotor vigilance task. According to his model, fatigue
impacted a parameter used to compute the utility of particular
task strategies (this parameter has been associated with mo-
tivation). This parameter change made random key presses
more likely as the participant became more tired. In addi-
tion, they modelled lapses in behavior by having productions
that had a sufficiently low activation that they would only be
performed as a result of random fluctuations in their activa-
tion parameter. Note how their model does not model dis-
traction through mind-wandering as an explicit process, but
instead assumes that the cognitive system is not functioning
during distraction. Similarly, Gonzalez, Best, Healy, Kole,
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and Bourne Jr. (2011) modelled the effects of fatigue on a
data entry task as a reduction in motivation in combination
with a reduction in attentional control. This attentional con-
trol parameter affects the activation of different pieces of in-
formation, and the larger this parameter is, the better these
pieces of information can be distinguished.

A previous ACT-R model of a sustained attention task that
is often used in mind-wandering studies (Peebles & Both-
ell, 2010) focused primarily on explaining response times
decrease just preceding an attentional lapse (as reflected in
an error). They produced this phenomenon by a competition
between two response strategies: one strategy is responding
whenever a stimulus is detected, which is very fast, while an
alternative strategy first checks the stimulus before respond-
ing. When the fast strategy fails then ACT-R will switch to
the most costly slow strategy. Note that this model does not
implement an explicit cognitive mechanism for what happens
during distraction. Here we intend to build on that previous
model by implementing a competition between a “distracted”
and an “attentive” model, where the distracted model makes
the mind-wandering process explicit.

Model

Our model of distraction (Figure 1) consists primarily of a
competition between a sub-model for paying attention to the
task and a sub-model for mind-wandering. The model was
implemented in the Adaptive Control of Thought-Rational
(ACT-R) cognitive architecture (Anderson, 2007). Tasks are
implemented in this cognitive architecture by specifying a set
of if-then statements (production rules) that describe how dif-
ferent cognitive resources interact. Two ACT-R mechanisms
are of crucial importance for our model. First, ACT-R has a
memory store, where the activation of each memory chunk
determines its use and its retrieval time. The activation in
turn is determined by how often a chunk is retrieved, its ac-
tivation at baseline, and how much activation spreads from
other, related memory chunks. The second mechanism that
determines what happens in the model at a particular moment
is the utility associated with each production rule. When pro-
duction rules help to generate rewards, their utility goes up,
leading them to be used more frequently. However, given that
in mind-wandering there are no external reward processes
that guide the process, we will not make use of this second
mechanism in our model.

In this application, the model starts out by focusing its at-
tention on the stimulus on the screen. When there is a stim-
ulus, it will process the stimulus and perform the appropriate
action. When there is no stimulus, it will continually run a
production which checks what the most active goal (“paying
attention” or “distraction”) is in declarative memory (“check
whether attending” in Figure 1). The activations of the goals
in declarative memory are governed by rules from episodic
memory decay (Altmann & Gray, 2008). This means that
items that are retrieved in activation, but over time the acti-
vation decays. At the start of the task, the “paying attention”

Figure 2: Model simulation of performance in the SART
task described by Mrazek and colleagues (2012). The model
(blue) captures both the number of SART errors and variabil-
ity in response time observed empirically (red).

goal is activated because it has been retrieved from episodic
memory. This goal then decays over time, and at some point
the “distraction” goal becomes stronger (Figure 1). When the
“distracted” goal is retrieved by this checking production, the
mind-wandering model commences.

Mind-wandering consists of a continuous retrieval of
declarative memories. The retrieval process keeps continuing
until at some point a memory that says “remember to attend”
is retrieved. At that point, the model returns to paying atten-
tion and the whole cycle can start again. There is spreading
activation between memories, which ensures that–as in real
life–memories that are of the same valence (positive, nega-
tive, or neutral) tend to be recalled in sequence (van Vugt,
Hitchcock, Shahar, & Britton, 2012).

Our main goal in this paper is to find out whether the hy-
pothesized mind-wandering model can in fact describe em-
pirical mind-wandering data. Studies have experimentally
studied mind-wandering by giving participants a very boring
task, in which participants are likely to drift off. Here, we
will model data from two experiments: Mrazek, Smallwood,
and Schooler (2012) (Experiment 1) and Bastian and Sackur
(2013) (Experiment 2). Both experiments are variants of the
sustained attention to response task (SART), in which partic-
ipants are requested to press a button as quickly as possible
every time a target is presented, but to withhold a button press
to a more rarely presented non-target (Cheyne et al., 2009;
Smallwood et al., 2004).

When the distraction model is inserted in a model of
the SART task, we assume performance is determined by
the following mechanisms, building on Peebles and Bothell
(2010)’s model. When task stimuli are presented while the
model is in paying attention mode, the model will look at
the stimuli and retrieve the relevant stimulus-response map-
ping from episodic memory. Conversely, when the model is
distracted, it will not retrieve the stimulus-response mapping
from episodic memory but instead respond with the habitual
response. However, responding may take a little while, be-
cause the model will only be able to respond when it is not
busy retrieving a memory in its mind-wandering train. This
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Figure 1: Model time line. Each box cor-
responds to a production (some less im-
portant productions have been left out).
The model starts on the left top with
retrieving its current goal, correspond-
ing to goal checking. Initially, the “at-
tending” goal has the highest activation
(see dashed blue box), but over time the
attending goal declines in activation to
become similar to the distracted goal.
When this “distracted” goal is retrieved,
the model switches to retrieving memo-
ries from declarative memory, represent-
ing mind-wandering. Mind-wandering
(cyan) continues until “remember to at-
tend” (purple) is retrieved. At that time,
the model goes back to monitoring goals.
When a stimulus is presented (pink line),
then the model identifies it and retrieves
the stimulus-response mapping in case it
is attending. When it is distracted, it fin-
ishes retrieving the current distraction and
then presses the default response.

potential delay before responding is responsible for creating
the increase in response time variability that is typically ob-
served in mind-wandering studies (Bastian & Sackur, 2013;
Mrazek et al., 2012). In Experiment 2, thought probes may
also be presented. Whenever a thought probe occurs, the
model will press the “on-task” button whenever it is in paying
attention mode, while it will press the “off-task” button when
it is busy retrieving memories from episodic memory during
distraction. The models can be retrieved from http://www

.ai.rug.nl/

˜

mkvanvugt/mindwanderingModels.zip. A
flow chart of the model is shown in Figure 1.

Model testing

Experiment 1

We first used our model to simulate the average data pub-
lished by Mrazek et al. (2012). In this experiment, the targets
consisted of the letter “O”, and non-targets consisted of the
letter “Q.” Stimuli were presented for 2 s with an interstimu-
lus interval of 2500 ms. There were in total 240 stimuli; 216
targets and 24 non-targets.

Figure 2 shows that the simulated performance of the
model reproduces both the observed number of SART errors
and the coefficient of variation of the response time. Errors
are produced whenever the model is mind-wandering. The
coefficient of variation results from variability in memory re-
trieval time.

Having established the model can produce behavior sim-
ilar to human participants, it becomes possible to examine
how the model produces this behavior. Figure 6 shows that
according to our model, the frequency of distractions shows
a U-shape: initially, there are quite a few distractions, which

Figure 3: Behavior produced by a model in which the thought
pump is ended with a production “end-thought-pump” rather
than a specific memory retrieval.

reduces in the middle of the task, and increases at the end.
While there is evidence for an increase in the frequency of
distraction towards the end of the task (Bastian & Sackur,
2013), it is not clear whether the distraction at the beginning
of the task is plausible. Future studies that have better mea-
sures of the frequency of distraction (e.g., Katidioti et al., sub-
mitted) should clarify this issue.

An important question is how crucial the proposed mech-
anism is for terminating mind-wandering. A simpler mecha-
nism for achieving this goal may be a direct competition be-
tween the “distraction” and “paying attention” goals. In other
words, at any moment during mind-wandering, a production
could fire that reflects the end of the mind-wandering pro-
cess. Figure 3 shows that this alternative mechanism makes
too few mistakes because the episodes of mind-wandering are
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Figure 4: Model simulation of performance in the SART task
described by Bastian & Sackur (2013). The model (blue) cap-
tures both accuracy and variability in response time observed
empirically (red) reasonably well.
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Figure 5: Response time distribution of SART performance
of Experiment 2, overlaying actual data (blue) with model
predictions (red).

terminated much too quickly. A caveat in this assertion is that
there may potentially be ways to change ACT-R parameters
to increase the duration of mind-wandering episodes.

The duration of mind-wandering is determined by the
episodic memory retrievals that make up the mind-wandering
process. When the pool of to-be-retrieved memories is
larger, then distractions will tend to persist longer, because
the chance that the distraction-ending memory is retrieved
is smaller. A larger number of retrievable memories corre-
sponds to something akin to the number of retrieval cues. In
some contexts, people may be able to think of many different
things, while in other context they can only retrieve a limited
number of items. A further determinant of distraction dura-
tion is the association structure of the distracting memories.
When memories spread activation to the memory that ends
the distraction, this will decrease distraction duration; when
they spread activation to other memories, this increases dis-
traction duration. These factors could potentially be manipu-
lated to account for individual differences in distractability.

Together, these results show that it is possible to use
our model of mind-wandering to simulate performance on a
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Figure 6: Predicted frequency of distractions in Experiment
1.

SART task. However, the results are fairly weak since we
only fit two average numbers: the number of errors and re-
sponse time variability. More data are needed to adequately
constrain our cognitive model. We therefore use the com-
plete dataset collected by Bastian and Sackur (2013) to fur-
ther test the model, which allows us to examine more behav-
ioral measures. An additional advantage of that dataset is that
the task was interspersed with thought probes that asked the
participant to report on the content of their thoughts. The re-
sponses to thought probes are another constraining factor for
our model. Moreover, it highlights an important advantage of
modeling mind-wandering explicitly, as we did here. When a
model has no explicit process description of mind-wandering,
it cannot predict responses to thought probes.

Experiment 2

In Experiment 2, participants performed a very similar task
as in Experiment 1, although the timing was a little bit dif-
ferent. Importantly, we did not change the model parameters
at all to predict performance in this task. In this experiment,
the non-target consisted of the digit 3, and the target con-
sisted of all other digits. The digits were presented for 500
ms with an interstimulus interval of 1500 ms. There were
in total 888 stimuli; 811 targets and 77 non-targets. In addi-
tion, 24 thought probes that were randomly interspersed in the
task. These thought probes asked a series of four questions
about task performance. First, participants were asked “How
focused were you on the task? 0: on-task, 1: task-related
thought, 2: distraction, 3: mind wandering.” Secondly, “Did
you know that you were in the just-reported mental state or
did you only notice it when asked? 0=aware, 1=unaware.”
The third question concerned the phenomenology/type of the
thoughts, while the fourth question assessed the temporal ori-
entation of the thoughts (past, present, future, or no particular
time). In this paper, we will only model the question about
whether the participant is on-task.

Figure 4 shows that task performance could be modelled
accurately with the model for Experiment 1, although in this
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case, the model is performing slightly too well for the partici-
pants. Potentially, model fits could be improved by adjusting
parameters.

In addition to average responses, it is also important to
consider the entire response time distribution (e.g., Ratcliff,
2002). Figure 5 shows that the modeled and observed re-
sponse time distributions for task performance overlay con-
siderably, although the response time variability predicted by
the model is too small.

Finally, our explicit model of mind-wandering allows us
to model the responses to questions about the contents of
thoughts. At random moments in the task, the participant is
asked whether they were on-task or off-task. Figure 7 shows
that the model over-estimates the proportion of being on-task
relative to human participants, which is consistent with the
model’s overperformance evident in Figure 4. Another no-
table feature visible in Figure 7 is that participants require
about 3–4 seconds to formulate their response to the ques-
tion “Were you on-task.” This response time is much longer
than those observed for cognitive tasks, and our model is not
able to predict it. Two potential mechanisms that could be
involved in generating this time are (1) the conversion of a
pre-verbal into a verbal response (Teasdale & Chaskalson,
2011) or (2) mental time travel to several moments before
the thought probe appeared to retrieve the memories that oc-
curred at that time (Howard & Kahana, 2002; Tulving, 2002).
Future modeling efforts should investigate these ideas.

Discussion

We proposed a model that describes mind-wandering mech-
anistically. We showed how it could account for task per-
formance in two experiments featuring the Sustained At-
tention to Performance task (without changing model pa-
rameters between the two). While previous models only
treat distraction abstractly as noise in the cognitive sys-
tem (VandeKerckhove & Tuerlinckx, 2007) or an absence of
cognitive activity (Gunzelmann et al., 2009), we made an ex-
plicit model of the mind-wandering process. This allowed
us to not only model task performance, but also responses to
thought probes. Our model provides a potential implemen-
tation of the executive failure theory, where in our case ex-
ecutive failure is implemented as a failure to keep checking
what the current goal is. It is also related to perceptual decou-
pling in that perceived stimuli are not further analyzed, but it
places the constraints at a higher level than initial stimulus
processing.

In the future, our explicit model of mind-wandering could
allow us to examine the effect of different types of mind-
wandering on cognitive processing. For example, depres-
sive rumination impairs task performance, and our model can
make predictions about exactly how it does so. By describing
the thought process from moment to moment, we will be able
to investigate how not only cognitive control factors affect
task performance, but also the content of thought. For this to
be done, it will be important to populate the model with mem-
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Figure 7: Observed (red) and modeled (blue) responses to
thought probe (“Are you on-task?”) in Experiment 2. (a) frac-
tion of on-task responses, (b) median time taken to respond
to thought probes.

ories that reflect the distribution of memories that is observed
in actual participants. Such data can be obtained from studies
that report the content of thoughts in thought probes (Bastian
& Sackur, 2013).

While our model makes a promising start with modeling
task performance, there is still some work to be done. Our
model predicts better performance in Experiment 2 than is
produced by the participants (Figure 4). In addition, the fre-
quency of mind-wandering episodes (Figure 6) shows a U-
shape, rather than the previously reported increase Bastian
and Sackur (2013).

The most dramatic discrepancy is in the response times to
thought probes, which are much faster in our model than in
real participants. A future iteration of our model may need
to include a mechanism by which the participant converts the
content of thoughts into a verbal report.

At the same time, we have relatively few datapoints and
cannot make strong inferences about our model. One pos-
sible future direction may be predicting the frequency of dis-
tractions. We have recently started to measure those by means
of eye movements to an ambient video monitor (Katidioti et
al., submitted). Our model could potentially describe how
the frequency of distraction changes over time, and depends
on different factors such as task difficulty. This is particu-
larly important because it is often thought that introspective
judgments are unreliable (Larson, Perlstein, Stigge-Kaufman,
Kelly, & Dotson, 2006).

In short, we have developed a mechanistic model of mind-
wandering. This model can in the future be used to disen-
tangle different types of mind-wandering. In addition, future
experiments should elucidate the neural correlates of distrac-
tion and mind-wandering, such that those measures can be
used to track distraction online (Bengson, Mangun, & Maza-
heri, 2012).
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