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Abstract
As we increasingly rely upon our computer information 
systems to  store and operate on sensitive information, the 
methods we use to authenticate user identity also become 
more important. One of the most important such methods is 
the password. However, passwords that provide better 
security also tend to be more difficult to remember. They also 
tend to be difficult to type, and typing errors can have 
negative consequences such as being locked out of a critical 
information system. We present a computational cognitive 
model of password rehearsal and a typing extension to the 
ACT-R cognitive architecture intended  to study human-
computer interaction issues in the usable security domain.
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Introduction
As cyber attacks on user-chosen passwords abound, there 
are large-scale, long-term research efforts underway (e.g., 
the National Strategy for Trusted Identities in Cyberspace, 
2011) to ultimately replace passwords as an authentication 
mechanism. In the near-term however,  password research is 
still important, as better understanding of the cognitive and 
perceptual motor components of creating, rehearsing, 
recalling, and typing passwords is necessary to help inform 
password policies and password requirements. Furthermore, 
even as alternative authentication mechanisms become more 
prevalent (e.g., biometrics), there will undeniably be legacy 
systems reliant upon passwords for quite some time.
 While the importance and impact of password research is 
clear, it can be difficult to obtain real-world password data 
due to security and privacy concerns, or in the case of 
leaked password datasets, due to ethical concerns. It would 
be prohibitively expensive and time-consuming to collect 
laboratory data from large numbers of participants across 
relevant password requirements, specifically different 
combinations of password rules for length and complexity. 
There are also issues of experimental control versus external 
validity; in researching password requirements,  does one 
assign passwords or have participants generate their own?
 As in other domains where access to human data can be 
challenging, behavioral data from existing password 
experiments can be supplemented with predictive models of 
human performance. Unfortunately,  most password studies 
do not collect sufficiently detailed data to assess model 
validity and plausibility. The cybersecurity and modeling 
fields could both benefit from computational cognitive 

models across a variety of password-related tasks: initial 
learning and rehearsal strategies; recall and entry of well-
memorized passwords; and cross-platform (i.e., desktop 
versus mobile) password typing. The current work focuses 
on support for modeling desktop password rehearsal and 
typing, specifically for complex, system-generated 
passwords found in higher-security enterprise environments.

Transcription Typing Versus Password Typing
There is certainly a large and longstanding body of expert 
typing and transcription typing literature (e.g., Coover, 
1923, Gentner, 1981, Salthouse, 1986), including 
examination of a variety of factors such as age and skill 
(e.g., Salthouse, 1984). However, there are several 
important distinctions between general transcription typing 
and password typing. 
 In the higher-security enterprise environments for which 
the current work is intended, passwords are quite different 
from words—in fact, most password policies explicitly 
prohibit the sole use of words, as dictionary attacks on 
passwords are so successful, dating back to the late 1970s 
(Morris & Thompson, 1979). Higher-entropy passwords 
differ quite significantly from the words commonly found in 
most traditional transcription typing experiments. “Better” 
passwords are supposed to be as random as possible in order 
to make guessing them more difficult; they should not 
follow orthographic rules as do regular words. Therefore, 
when typing complex passwords, we cannot leverage many 
of the benefits of natural language. Beyond simple inclusion 
of lowercase and uppercase letters, most higher-entropy 
passwords also include numbers and special characters, 
making it difficult or impossible to leverage error correction 
techniques during password typing. Furthermore, password 
text is usually masked, whereas normal text is not.  These 
factors may contribute to changes in strategy for carefully 
typing passwords in comparison to normal transcription 
typing. 
 In addition to behavioral studies of transcription typing 
(see Salthouse,  1986 for a good review), there have also 
been cognitive models of the task. By far the most 
comprehensive and well-known computational cognitive 
model of transcription typing is Bonnie John’s TYPIST 
(John, 1996).  John’s TYPIST quantified 19 of the 29 
previously reviewed Salthouse (1986) phenomena as well as 
two additional phenomena. While TYPIST quantified 
transcription typing along the time dimension with 
scheduling charts, it did not simulate decreased performance 
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variability with higher typing skill, nor brain areas’ 
activation patterns, as have more recent queuing network 
models (e.g.,  Wu & Lui, 2004). Regardless, to the best of 
the authors’ knowledge, there does not currently exist an 
ACT-R model of rehearsal and typing for complex, system-
generated passwords on a standard desktop QWERTY 
keyboard. The current work is a necessary first step to begin 
addressing this gap.

Typing System-Generated Passwords
Prior Work
The current work was motivated by a desire to use cognitive 
modeling as an error exploration technique to supplement 
prior usable security research. The primary goal was to 
better understand the underlying cause of errors reported in 
a recent study of complex password entry on desktop 
computers (Stanton & Greene, 2014). This section describes 
relevant methodology and results of interest from said study.

Method In the Stanton and Greene (2014) study, 
participants were given ten system-generated1 passwords in 
a random order. Passwords ranged in length from six to 14 
characters (see Table 1). 

Table 1: Stimuli (Stanton & Greene, 2014).
Password Length
5c2'Qe 6

3.bH1o 6

m3)61fHw 8

ua7t?C2# 8

p4d46*3TxY 10

q80<U/C2mv 10

d51)u4;X3wrf 12

6n04%Ei'Hm3V 12

m#o)fp^2aRf207 14

4i_55fQ$2Mnh30 14

Each password had to contain at least one uppercase letter, 
one lowercase letter, one number, and one special character. 
Passwords could not end with an exclamation mark, nor 
could passwords begin with a capital letter. Note the variety 
of symbols in the preceding stimuli, many of which are not 
supported for typing in standard ACT-R. 
 Two groups of participants were tested in the Stanton and 
Greene (2104) study. One group was from the Washington, 
DC (WDC) metropolitan area in the United States, and the 
other was from the University College London (UCL) in the 
United Kingdom. This sampling distinction is important, as 

results differed somewhat by participant group.  The authors 
proposed that this might be due to differences in age and/or 
typing ability between the two groups, as the WDC group 
was older than the younger UCL group, which was 
composed of mainly undergraduates.
 In the Stanton and Greene (2014) study, participants 
received one password at a time, and for each password, had 
to complete a series of three tasks: practice, verification, and 
entry. During practice, the password was visible, and 
participants could practice typing the password in a large 
text field. Participants could practice typing the password as 
many or as few times as they wished. There was no 
feedback given during the practice task, and typed text was 
visible (i.e., not masked as in a regular password field). 
 During verification, the password was not visible, and 
participants had to enter the memorized password correctly 
in order to move onto the entry screen. Typed text was 
visible (i.e.,  not masked) during verification. If participants 
failed the verification task, they could continue to attempt 
verification, or choose to return to the preceding practice 
screen to practice the password again.  Regardless,  after 
participants completed the verification task, they moved 
onto the entry task. 
 During entry,  participants had to enter the memorized 
password ten times. On the entry screen, the password was 
not visible, nor was typed text visible. Instead,  it was 
masked with asterisks, as password fields tend to be in use. 
After participants completed the three phases—practice, 
verification, and entry—for all ten passwords, they received 
a surprise recall test. During the surprise recall test, typed 
text was visible (i.e., not masked). 
 Note that although modeling cognitive rehearsal and 
disambiguating memory from motor errors were the foci of 
the current work, it was necessary to include a description of 
the larger experiment here as well, since expanding the 
current model to account for additional phases of the 
experiment is potential future work. Furthermore, planning 
for future model expansion to address those additional 
experimental tasks was influential in determining 
implementation of the current password typing model.

Results Here we focus on errors rather than timing results 
from the Stanton and Greene (2014) study. Both are 
important to test the validity of a model, but the decision to 
emphasize errors rather than times for password typing 
parallels their importance in the real world. Accounts are 
often locked for too many erroneous login attempts, but it is 
virtually unheard of for a user to be locked out for typing 
too slowly. Furthermore, knowing which error categories 
were most prevalent was helpful for determining where to 
focus our modeling efforts,  as well as for evaluating model 
plausibility. 
 There were several error classes reported in the 
aforementioned study. Table 2 presents results from Stanton 
and Greene (2014) in order of decreasing error category 
prevalence. Note that the table is ordered based on total 

1 Advanced Password Generator from BinaryMark was used. Disclaimer: Any mention of commercial products or reference to commercial 
organizations is for information only; it does not imply recommendation or endorsement by the National Institute of Standards and 
Technology nor does it imply that the products mentioned are necessarily the best available for the purpose.
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error percentages; the order would differ slightly if based on 
either the WDC or UCL participant group.

Table 2: Categorized errors (Stanton & Greene, 2014), 
rounded to nearest percentage.

Error Category WDC UCL Total

Incorrect capitalization 38% 51% 45%

Missing character 25% 10% 17%

Adjacent key 8% 10% 9%
Wrong character 6% 12% 9%

Transposition of characters 10% 6% 8%

Extra character 7% 7% 7%

Zero instead of an “O” 3% 3% 3%
Wrong place within password 3% 1% 2%

It should be immediately obvious from Table 2 above that 
incorrect capitalization was the largest class of errors for 
both participant groups. It is by far the most interesting class 
of errors to model for several reasons: 1) the sheer 
magnitude of the incorrect capitalization error class in 
comparison to other error categories, 2) the practical 
significance of that error class given current password 
requirements, and 3) the interesting theoretical question 
posed by the nature of that particular error.
1) At 45% of the total error corpus, incorrect capitalization 

errors were nearly three times as likely as the second 
most prevalent error class (missing character errors, 17% 
total), and incorrect capitalization errors were five times 
as likely as the third most prevalent error categories 
(adjacent key and wrong character errors, each 9% total). 

2) The fact that the most frequently occurring error was 
incorrect capitalization is quite significant given that 
most modern password policies require at least one 
uppercase letter. Furthermore, the majority of special 
characters—also required by many password policies—
require shifting. Twenty-one of the total 32 possible 
symbols require shifting, whereas only 11 do not.

3) A particularly interesting point about incorrect 
capitalization errors is that based purely on the behavioral 
data reported in Stanton and Greene (2014), it is unclear 
whether those errors were memory errors or motor 
execution errors. Answering this question would help 
inform typing theory specifically for complex passwords.

An ACT-R Model of Password Rehearsal

Before enabling ACT-R to type capital letters, a cognition-
only (i.e., no use of the motor module) model of password 
rehearsal was constructed,  to test whether it alone could 
account for the errors seen in the behavioral data.

Stimulus Selection
Given the artificiality of having people learn 10 randomly 
generated passwords in a single session, rather than attempt 

to model the entire stimuli set at once, a single password 
was selected for the initial model: q80<U/C2mv. This 
allowed the model focus to be on the cognitive phenomena 
of interest: rehearsal and retrieval of a single password, 
which is more reminiscent of a real-world scenario, where 
we attempt to rehearse a newly generated password to login 
to a single account. Why select that particular password 
though? Of the 10 passwords in Table 1, the “q80” password 
seemed the most interesting to model for several reasons. 
First, at 10 characters long, it was one of the two middle 
length passwords. (The shorter passwords are really too easy 
by today’s more stringent password rules, as most higher-
security enterprise environments require a minimum length 
of 10 to 12 characters.) Of the two length-10 passwords, the 
“q80” password had two non-alphanumeric symbols, 
whereas the other length-10 password had only a single non-
alphanumeric symbol. This is important, as prior work on 
the linguistic and phonological difficulty of system-
generated passwords suggested chunking passwords 
between non-alphanumeric symbols (Bergstrom, et al. 
2014). Furthermore,  when asked, people consistently 
verbalize that password as “Q eighty is less than U over C 
two M V” and that they “break the password up” at the non-
alphanumeric symbols.  Since there were no interview data 
asking people about their chunking or rehearsal strategies 
reported in the Stanton and Greene (2014) desktop study, it 
seemed reasonable to use such qualitative observations to 
inform the current desktop password rehearsal model. When 
verbally reciting a password, it certainly makes sense that 
people might chunk passwords (at least initially) in similar 
ways across platforms.

Model Implementation
For the initial model, the password was broken up into the 
following chunks based on splitting it at the non-
alphanumeric symbols:
1) q80
2) <
3) U
4) /
5) C2mv
In the model’s declarative memory, chunks were encoded 
with their contents, an ID, and a pointer to the next chunk in 
the sequence. A more complete model of the task would 
build up these chunks character-by-character. However, 
since participants in the Stanton and Greene (2014) study 
were allowed to practice each password as many or as few 
times as they wished, the initial practice strategies and 
number of practice repetitions that would account for 
building up such a representation could vary widely. Rather 
than implement different models to simulate a variety of 
practice methods, the model assumes the initial pieces of the 
password are starting knowledge, and employs a very 
simple rehearsal strategy.  It cycles through chained retrieval 
of the various chunks in the password to mentally rehearse 
the stimulus for a period of time that is settable by the 
modeler. Since ACT-R did not natively support typing the 
less-than symbol, nor did it support typing errors of any 
kind, rather than having the model type the retrieved 
chunks, it simply output them to a file. 
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The set-similarities option in ACT-R benefits from a 
principled,  ideally a priori, hypothesis as to the nature of the 
similarities between chunks. In this case we assume that 
non-alphanumeric symbols are more similar to, and thus 
more confusable with, one another than are letters to non-
alphanumeric symbols, and letters are more similar to one 
another than are letters to numbers.  However,  the exact 
value to assign each similarity is still an open question, and 
there are 10 such pairwise similarities to set. This seems less 
than ideal for the current password, and even worse when 
considering longer passwords that contain a greater number 
of chunks. 

Although the model did predict the nature of the jump-
transposition errors humans made (where they transposed 
the two symbols that were separated by a single letter), it 
could not account for failure to capitalize the “U”, nor could 
it account for failure to capitalize the “C”, which were errors 
seen in the Stanton and Greene (2014) study. As 
capitalization errors were by far the most prevalent error in 
said study, a mechanism for typing capital letters in ACT-R 
was sorely needed. 
 Investigating the source of password entry errors is a 
perfect application opportunity for cognitive modeling to 
shed light on the root cause of an error (or errors) that was 
difficult to ascertain through prior behavioral data alone. By 
implementing support for an ACT-R model that can type 
capital letters, one could then test different models to see 
whether those incorrect capitalization errors were memory 
errors or motor execution errors (where a shift key press had 
been attempted but simply not executed properly, such as by 
prematurely releasing the shift key). The ability to type 
capital letters raises interesting theoretical questions.  For 
each letter of the alphabet, do people have two distinct 
versions in their memory, one lowercase and one uppercase? 
Or is an uppercase letter encoded as the lowercase plus a 
required shift action?

Implementation Issues in ACT-R
In order to support modeling of incorrect capitalization 
typing errors, two limitations in ACT-R first required 
addressing: missing special characters, and lack of case-
sensitivity in typing.

Missing Special Characters Of the special characters in 
Table 1, ACT-R previously included support only for the 
period,  semicolon, slash,  and quote (Bothell, 2014, see 
“key” on page 320 of the ACT-R Reference Manual). 
Therefore, in order to enable modeling typing of the 
remaining symbols in Table 1 (right parenthesis, question 
mark,  number sign, asterisk, less-than sign, percent sign, 
caret, underscore, dollar sign), it was necessary to address 
the somewhat limited prior support for non-alphanumeric 
symbol typing. As we want to support modeling of any 
possible password,  not merely those in Table 1, we added 
support for all remaining ASCII printable characters not 
previously supported by ACT-R.

Lack of Case-Sensitivity Regardless of whether calling 
ACT’R’s “press-key” motor module request (Bothell, 2014, 
see page 317 of the ACT-R Reference Manual) with a 

capital or lowercase letter, the output will be the same in 
ACT-R’s current instantiation. This is somewhat 
problematic for modeling incorrect capitalization errors, 
which requires that ACT-R be capable of press-and-hold 
capability for the left and right shift keys, combined with a 
simultaneous key press of a second key (i.e., chorded 
typing). Therefore we added to ACT-R a capability to type 
key chords and output case-sensitive text, as described in 
the following section.

Stochastic Typing Extension for ACT-R
The standard ACT-R distribution (Anderson, et al, 2004; 
Anderson 2007) does not commit any typing errors as a 
matter of motor error (Bothell, 2014). However, real 
humans, even very skilled typists, are imperfect, and tend to 
err at rates from 0.5% to 35% (Salthouse, 1986; Panko, 
2008; Landauer,  1987). We wished to explain password 
entry errors, but because some errors are due to memory 
processes and some are due to motor processes, we had to 
extend our modeling framework of choice,  ACT-R, so that 
it,  too, would be capable of such motor errors. Furthermore, 
we needed to implement the low-frequency, non-
alphanumeric characters that information systems often 
require their users to incorporate into their passwords as a 
matter of security policy, e.g. “*” or “?”. Source code for the 
ACT-R stochastic typing extension may be downloaded 
from https://github.com/usnistgov/CogMod.

Motor Errors in Typing
Our typing extension for ACT-R redefines some of ACT-R’s 
existing code so that any requested typing action can 
stochastically result in the output of a typed key other than 
the one intended. To do so it adapts the ellipsoid motor 
movement error equation of May (2012) and Gallagher and 
Byrne (2013), which leads to greater error along the axis of 
movement than off the axis, the off-axis error being scaled 
to .75 of the on-axis. However, because here the units are 
keys rather than pixels as in May’s study, and ACT-R 
assumes most keys are the same width, the width term in 
May’s equation is simplified to 1.
Hold-Key Because typing non-alphanumeric characters 
typically involves holding a shift key while striking another 
key, and standard ACT-R provides no way to hold any such 
modifier key, it was necessary to invent such a method. Our 
errorful typing extension provides two motor module 
request extensions (see “extend-manual-requests” on page 
325 of the ACT-R Reference Manual, 2014) to enable the 
holding and releasing of modifier keys such as shift. 

The new hold-key motor module request acts like press-
key, translating the requested key to be held into a peck 
movement (Bothell, 2014, pp. 315-6) with the appropriate 
features. Once the hold-key motor movement is executed, 
ACT-R will have a state indicating that the appropriate key 
is being held. This state in turn causes ACT-R to now output 
a different character for the same press-key requests that 
follow for the given keys. The model can request the 
release-key function to release the given modifier key and 
end the modifier key state.
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Additional Characters With a shift key held, ACT-R can 
now type a set of ASCII-compatible, non-alphanumeric 
characters such as “*” and “?.” It can now also type capital 
letters as well as lower-case letters, a critical feature for 
case-sensitive passwords that standard ACT-R lacks.

Discussion and Future Directions
To address the question of setting appropriate chunk 
similarities in the initial password rehearsal model, a revised 
model is underway that has restructured the chunks in 
declarative memory, and does not use partial matching and 
set-similarities, instead relying upon spreading activation. 
This new model is now ready to interface with the stochastic 
typing extension.
 Beyond using the new typing extension, one obvious 
expansion of the model would be to account for additional 
phases of the Stanton and Greene (2014) experiment, such 
as the initial practice and verification tasks. The model 
should also be expanded to test against the remaining nine 
passwords and additional stimuli. Modeling the experiment 
in its entirety would require interfacing with a real or virtual 
window to control presentation of the stimuli; this would 
allow the model to visually obtain the stimuli and build up 
representations of each password in the imaginal buffer 
letter-by-letter. As an initial model of a larger complex 
experiment, it seemed more prudent to focus the current 
work on a single interesting phenomenon, in this case, 
support for disambiguating memory from typing errors. 

We chose to focus on support for disambiguating the most 
prevalent error in the Stanton and Greene (2014) study, 
which was incorrect capitalization. As “missing character” 
was the second most common class of errors in said study, 
the current stochastic typing extension for ACT-R should  be 
modified to support typing omissions.  Furthermore, there 
are further refinements we would like to make to the ACT-R 
typing extension to reflect other systematic effects that we 
did not yet incorporate, such as the likelihood of specific 
error classes should depend on which fingers are pressing 
which keys. For example, in traditional transcription typing 
studies, omissions are more likely with the weaker little 
finger. Adding support for ACT-R sensitivity to finger/key 
combinations would benefit future work. 
 In the future, it would be informative to construct models 
of the data from the Washington, DC and University College 
London groups separately to investigate age effects and/or 
typing skill differences suggested in the Stanton and Greene 
(2014) desktop password typing study. This would first 
necessitate updating ACT-R’s virtual keyboard to support a 
standard UK QWERTY keyboard layout. We could then 
explore modeling parameters for older adults, as recent 
research suggests that they are task- and device-dependent, 
and strategy may interact with task and device (Howie, 
2015). A deeper understanding of participants’ rehearsal and 
memorization strategies would help inform and test future 
models. 
 Regardless of platform, it is important that ACT-R have 
the ability to commit motor errors when typing so that we 
can model both memory and typing components of 

password entry tasks. This is critical to determine which 
parts of the task are platform-agnostic versus platform-
dependent. We should test the password rehearsal model on 
mobile password typing for smartphones and tablets. 
Clearly the stochastic typing extensions for ACT-R that we 
created for modeling desktop password typing would not be 
appropriate for modeling interactions with mobile 
keyboards. Instead, we could utilize recent work by 
Gallagher (2015) and Gallagher and Byrne (2015) on 
mobile password typing.  No doubt device interacts with 
password complexity, but it would be interesting to see how 
the initial password learning and rehearsal is affected by 
device constraints. Are basic password rehearsal strategies 
similar across devices? A model that utilized the articulatory 
loop for rehearsal could be viable across multiple platforms. 
 We think typing differs qualitatively between platforms, 
especially between desktop and mobile touchscreen 
computers. Motor scheduling errors should occur in desktop 
typing when people are typing in parallel and depressing 
two keys simultaneously. Mobile password typing is more 
sequential (although it can be interleaved depending on one- 
versus two-fingered typing style) than is desktop typing. 
Therefore motor errors on mobile platforms should be more 
a matter of motor execution accuracy errors than scheduling 
errors. This would make sense due to the large size of the 
input device (i.e., a finger) in comparison to the small size 
of the onscreen keyboard buttons. In fact,  research 
replicating the desktop Stanton and Greene (2014) study on 
mobile devices (Greene et al., 2014) found that the 
proportion of adjacent key errors was significantly greater 
on a smartphone than on a tablet, and the smartphone 
adjacent key errors were more than twice as prevalent as in 
the desktop study. Testing the current password rehearsal 
model across platforms would contribute significantly to 
disambiguating typing from memory errors.

Regardless of platform, comparison of current and future 
model predictions to human data could utilize more 
quantitative measures for comparing errors between 
passwords. For example, a measure of edit distance such as 
the Levenshtein distance or the Damerau-Levenshtein 
distance would be appropriate (Navarro,  2001). Both of 
these metrics measure differences between sequences based 
on the number of edit operations required to change the 
given string into the target sting. However, the former only 
allows insertions, deletions, or substitutions, while the latter 
allows those and also transpositions. 

Overall,  this work illustrated several challenges in 
modeling a dataset not originally intended for modeling. For 
example, we do not know if participants in the Stanton and 
Greene, (2014) study were touch typists, and ACT-R 
assumes a “moderately skilled touch typist” (Bothell, 2014, 
see page 317 of the ACT-R Reference Manual). While we 
made significant progress constructing a model and 
extending ACT-R’s typing ability to better model previously 
reported behavioral data, it would be ideal to conduct an 
entirely new study for model validation purposes. A study 
specifically designed to inform and test model predictions 
should include more controlled practice with feedback and 
reinforcement; assign participants fewer passwords but 
force them to practice them many more times; use a within-

230



subjects design to test password entry across multiple 
devices (i.e., desktop and mobile); include a baseline typing 
test to assess whether participants are touch typists; and 
explicitly query participants regarding their chunking and 
rehearsal strategies.

Although there is certainly much work that remains to be 
done, we feel the current effort was an important first step 
toward testing theories of password learning and typing on 
what is still the most prevalent platform for text-heavy 
tasks: the desktop computer. We now have the capability to 
begin disentangling memory from motor errors.  Both 
memory and motor are sources of error that must be 
addressed separately, but that interact with each other within 
a single integrated system, people.
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