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Abstract
Speeded and/or simple response tasks may be cognitively mod-
eled by a random walk process that accumulates to threshold.
In cases of tasks where mainly one characteristic response is
observed, at varying latencies, then random walks involving
only positive drifts that each arrive at a single threshold, pro-
vide a suitable accumulation modeling account of the data; and
advantageously, this accumulation model is exactly described
by the shifted Wald (SW) probability density function. We will
demonstrate how the SW distribution is thus a noteworthy cog-
nitive model for these tasks, which uniquely possesses simul-
taneously, high utility as an objective data measurement tool
for the response time (RT) distributions. Per each experiment
condition, its three parameters can decompose the observed
mean RT value, quantify the shape and characteristics of the
observed RT distribution, and account for significant differ-
ences between distributions with near-identical mean values;
regardless of whether one accepts the cognitive interpretation
of the random-walk accumulation process. We present the SW
model and demonstrate its efficiency and utility on both simu-
lated and real data.
Keywords: response time analysis, shifted Wald, psycho-
metrics, accumulation modeling

Introduction
In the psychological sciences, the efficacy of modeling the
distributions of response time (RT) data, rather than only
using classical methods, to obtain a deeper understanding
of experiment effects and underlying processes, has been
well-demonstrated in the preceding literature (Ratcliff, 1978;
Luce, 1986; Ratcliff & Rouder, 1998; Andrews & Heathcote,
2001; Heathcote, 2004; Van Zandt, 2000, 2002; Ratcliff et al.,
2004; Balota et al., 2008; Van Maanen et al., 2012; Staub
et al., 2010; Balota & Yap, 2011). In the present paper we
bring attention to a simple-yet-powerful tool for RT data anal-
ysis, that despite its utility, is not yet in general use within the
psychological community.
There exist quantitative distribution measurement tools for

RT data, in which the parameters describe the properties
of the observed data distribution; these tools are typically
closed-form probability density functions with positive skew
and values, such as the shifted Wald (SW, see Chapter 8.2
Luce, 1986; Heathcote, 2004), ex-Gaussian (Heathcote et al.,
1991), shifted Weibull, shifted log-normal, and Gumbel (Wa-
genmakers & Brown, 2007). Then there are more compli-
cated models of RT data that model signal accumulation:

such as the Linear Ballistic Accumulator (LBA, Brown &
Heathcote, 2008), race model (LaBerge, 1962), and the Drift
Diffusion Model (DDM, Ratcliff & Murdock, 1976; Ratcliff,
1978; Ratcliff & McKoon, 2008), however their parameters
do not directly describe the distribution of RT data. We bring
to attention that uniquely, the SW distribution does both at
the same time, and argue that as an accumulation model, it is
on par in usefulness with more complex models of accumu-
lation, when used in the appropriate context.

The Shifted Wald
Among a number of situations, the SW for RT data is apt
for experiments consisting of speeded (e.g. 500ms-2000ms)
and/or simple response tasks, where in particular, the ratio
of errors to correct responses is small; some concrete exam-
ples consist of visual search, picture-naming, simple detec-
tion, and go no-go tasks. One should note that being only
a distribution that is fit, the SW is a very simplistic model
with few assumptions. However despite its simplicity, it pos-
sesses a formidable characteristic that stands it apart from the
other distributions and models listed: while its parameters di-
rectly quantify the RT distribution, they also simultaneously,
directly describe the RT values in the context of a Brownian
motion process (BMP) in which a latent quantity accumulates
to threshold; this is the same kind of BMP, related throughout
the literature to signify the signal-to-response threshold event,
that is at the root of the other popular signal-accumulation
models, such as the DDM, race, and LBAmodels. Thus while
being a quantitative measurement tool that can be applied to
describe the distribution of any set of magnitude RTs, the SW
model also provides an opportunity for theoretical work, such
as on the cognitive-behavioral response process, based on its
ability to also describe the data in terms of latent signal accu-
mulation.

As an Accumulation Model
The SW with parameters, γ , α , and θ , can directly describe
the data in the context of a continuous time-stochastic pro-
cess (a type of BMP), consisting of a single latent quantity,
X , that is continuously accumulating until it reaches a thresh-
old. More specifically, X , accumulates at a given rate, γ , with
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Figure 1: The SW as a cognitive-behavioral model (left), describing the RT data in the context of a latent quantity (e.g. signal)
accumulating to threshold, α , at rate, γ , where θ accounts for the time lapsed outside of (around) this process. Then the SW as
a distribution measurement tool (right). The black distribution has θ = 200, γ = 0.08, and α = 40, and illustrated in different
shades of grey, are individual parameter adjustments that each cause unique distribution outcomes. Here they are each adjusted
in the direction that results in bigger data values (e.g. slower RTs, slower mean RTs), which in each instance, results by a
different distribution form.

noise until it reaches a threshold, α ; and θ (the shift) is the
minimal time lapsed outside of the process, which can be dis-
tributed before and after this accumulation process; the to-
tal time lapsed, T , is the data fit by the SW. This latent ac-
cumulation process provides a potential model for any data
that involves a quantity accumulating over time that eventu-
ally reaches a value (or threshold). The SW thus provides the
opportunity for a potentially-useful model, analogous to the
signal-to-response threshold event of behavior.
In the context of RT data and the appropriate experimen-

tal task, this kind of underlying accumulation process that
we note is similarly shared (by elementary adjustments) with
the other aforementioned accumulation models, has been
well-supported to correspond to a signal-to-response thresh-
old, cognitive-behavioral event. In the case of the signal-to-
response threshold interpretation of the SW: γ corresponds to
the accumulation rate of the internal signal X , α to the thresh-
old needed to initiate the physical response, and θ to the time
distributed before and after this process (thus time lapsed out-
side of signal accumulation). The total time lapsed, T , is the
RT recorded.
This latent accumulation process is illustrated in the left

plot of Figure 1, in which many random walks with drift
(RWDs, starting at θ = 200, and having average slope γ =
0.08) as they intercept threshold α = 40, are shown to corre-
spond to a SW distribution with the same parameters: {γ =
0.08 , α = 40 , θ = 200}. Each of these RWDs are of the form

Xt = Xt−1+ γ + ε , (1)

where the position of a random variable X at time t, as Xt ,
is equal to its prior position value, Xt−1, plus a movement

tendency, γ > 0 (known as drift), and marginal error, ε (or
noise).1

Then note that any given threshold, α > 0, unto which the
time process terminates when Xt reaches that value, as Xt ≥α ,
will produce a Wald distribution of data: letting T denote the
time t at which Xt reaches α , then the data is of the form

T = (Ti)1×N , (2)

for the N times (e.g. or RT observations) that the SW dis-
tribution describes (T is also known as the first passage time
of the BMP). Parameter θ functionally accounts for these as-
pects external to the RWD by shifting all values of t by a
constant, in which the starting point of the accumulation pro-
cess, X0 = 0, instead becomes, Xθ = 0. While θ shifts the
distribution from the left, note that its effect, mathematically,
is equivalent in being able to account for external processes
that occur on either side of the accumulation event.

As a Distribution Measurement Tool

While the SW and its parameters can directly describe the
data in the context of a latent quantity accumulating to thresh-
old, the SW can also serve as an objective distribution mea-
surement tool, in which its parameters, γ , α , and θ , will di-
rectly quantify the density of the observed RT distribution.

1The RWD form in (1) is the same kind used by other models
of accumulation: the LBA, race, and DDM, with elementary adjust-
ments; these are specified in the Discussion.
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The SW distribution with probability density function

f (X | γ ,α ,θ ) =
α?

2π(X −θ )3

· exp
?
− [α − γ(X −θ )]2

2(X −θ )

?
,

(3)

has expected value α/γ + θ , and variance α/γ3, for X > θ .
The pdf is illustrated in the right plot of Figure 1, in which the
distribution in black print has parameters θ = 200, γ = 0.08,
and α = 40; then in different shades of grey, the figure also il-
lustrates the outcome obtained when each of these parameters
are individually adjusted in the direction that results in bigger
data values (e.g. slower RTs). In each parameter adjustment,
there is a unique distribution outcome: for example one can
see parameter θ will give the position of the leading edge of
the distribution, and shifts the entire distribution horizontally
(to the right for slower RTs); then γ and α both serve to lo-
cate the central tendency within the shifted distribution; but
γ is more informative for mass in the tail, and hence steep-
ness of the leading curve (thicker tail for slower RTs); and α
for the deviation centrally around the mode value, and hence
normality around the mode (larger deviation for slower RTs).

While these individual parameter adjustments illustrated in
the right plot of Figure 1, each provide for a unique distri-
bution outcome, note that some of these distributions how-
ever share similar mean RTs, such as the dark and medium-
grey distributions. Such can be the case in real data, when
markedly different distributions, with near-equal means, are
observed across experimental manipulations. Experiment
manipulations with such contrasting distribution results, yet
similar mean RTs, could likely cause a Type II error in clas-
sical analyses that mainly compare the means.

The advantage of the SW as a measurement tool is its abil-
ity to parse the distribution for these features by its three-
parameter decomposition of the central tendency, in which as
noted before, E(X) = α/γ + θ . In total, noteworthy advan-
tages of the SWmay include: (1) the whole distribution being
fit across each experimental manipulation; (2) experimental
manipulations being quantified along three kinds of distinct
distribution outcomes; (3) observed RT data means being de-
composed according to their distributional make-up; (4) ob-
served means with similar values may be revealed rather as
markedly different; and (5), the RT data being fit on its natural
scale by the SW, with no need for an inherently-imperfect ap-
proximation to the normal. These benefits can be further sup-
ported by early works expounding the importance of account-
ing for the full RT distribution by Luce (1986); also some of
the aforementioned benefits are explicitly discussed by Balota
et al. (2008); Balota & Yap (2011) yet in the context of the
ex-Gaussian, which is also an excellent distribution measure-
ment tool, but does not have this direct correspondence to a
latent accumulation process.

Utilizing the Shifted Wald
Whether one decides to utilize the SW as a distribution mea-
surement tool, or as an accumulation model of the data, the
approach of use is the same: to simply fit the distribution,
which is to estimate its three parameters. It is the same ap-
proach since the parameters of the SW simultaneously de-
scribe both the shape of the RT distribution, and the data in
the context of latent accumulation to threshold.

Application to Simulated Data
We developed a fitting method that combines techniques of
deviance criterion minimization of observed-versus-predicted
quantile distance, and maximum likelihood (ML) estimation,
to fit the model parameters. The approach is summarized as
follows. In the case of the SW, given a parameter value for
its shape β , the other two parameters, θ and α , may be deter-
mined by closed-form ML estimators, developed as in Nagat-
suka & Balakrishnan (2013). Parameter γ is then obtainable
as γ = 1/αβ . An algorithm searches the near-entire space of
β , and for each β , computes the model-predicted quantiles in
the near-full range at high resolution (e.g. 100 equally-spaced
quantiles between the .02-.98, or .001-.999 range depending
on choice of fitting outliers in the data).2 The parameter set
that leads to the smallest absolute difference in the observed-
versus-predicted quantiles is selected as the fit.
We have found the SW in the context of this method,

to be robust in the recovery of parameters during cases of
both small numbers of observations N = 50, as well as large
N = 1000; the fitting procedure finishes on the level of sec-
onds using standard computing technology, and can be sim-
ply performed via R or MATLAB. The following table con-
tains the simulation recovery results, which are the average
Pearson r correlations between the model fit and generating
parameters across 1000 recovery simulation trials; each row
corresponds to the recovery of a different data set size (e.g.
number of observations), N.

Table 1: Parameter Recovery, Average Pearson Correlations
Observations γ α θ

N = 1000 0.99 0.95 0.99
N = 500 0.98 0.93 0.99
N = 250 0.97 0.89 0.99
N = 125 0.94 0.82 0.98
N = 50 0.88 0.68 0.97
N = 15 0.72 0.47 0.92

In addition, the fits also matched the observed data quantiles
very well. Given the desirable performance of the method,
we utilize the approach to fit the real data.

Application to Real Data
In this section, the fitting approach is demonstrated on a data
set involving a visual search (VS) task by baboons of mixed
ages, collected by Goujon & Fagot (2013); and the results

2For more information, see Anders et al. (in review).
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Figure 2: The SW fit to the VS task by baboons: (left) mean parameter values with bars representing standard error of the mean
grouped by experiment factor, NC = 1080 and NTr = 135, in which the grey dots show the training effect for the non-predictive
(shuffled) condition, and the black for the predictive condition; (top-right) fitted-versus-observed, quantile-quantile plot for the
N = 2,158 distributions fit for all deciles; (bottom-right) the distribution of residuals for the nine deciles across the distributions.

will be presented in the vocabulary of the SW as a latent ac-
cumulation model for the data. The experimenters explored
an animal model (via baboons) of statistical learning mecha-
nisms in humans, specifically the ability to implicitly extract
and utilize statistical redundancies within the environment for
goal-directed behavior. Twenty-five baboons (species Papio
papio) were trained to perform a VS task with contextual
cueing. The task consisted of visually searching for a tar-
get (the letter “T”) that was embedded within configurations
of distractors (letters “L”), which were either arranged pre-
dictively to locate the target (hence a contextual cue), or non-
predictively (shuffled, without a cue).
As organized by the original researchers, there are three

meaningful partitions: theC= 2 predictive vs. non-predictive
contextual cue conditions; the E = 40 time-points (epochs) to
observe training effects, in which every unit step in E consists
of 5 blocks (each block contains 12 trials, and thus each E
contains 60 trials); and the B = 27 individual baboons. These
three meaningful factors provide for N = 2158 separate dis-
tributions to each be individually fit by the SW. The average
distribution length (number of observations) is L̄ = 30, with
standard deviation, SD(L) = 1.10.
Figure 2 provides the results of the analysis on the baboon

VS task. The left column of three plots respectively contains
the means, and their standard errors, of the model-fit mea-
surements of three SW parameters: γ , α , and θ , grouped
by experiment factor: condition (NC = 1080) and training ef-
fect, in which the levels are averages of every five proceeding
epochs, to simplify the illustration (NTr = 135 per each of two

conditions). Beginning with consideration of condition, the
model clearly isolates the effect of condition (non-predictive
vs. predictive) on a single parameter, the accumulation rate of
signal strength (or target detection), γ ; note that the standard
errors of the mean in this case are in fact too small to be seen
in the plot. The other parameters, α and θ , which in this task
might be respectively interpreted as a certainty criterion be-
fore responding, and mechanical response/visual processing
RT speed, showed no substantive change across conditions.
Next, the analysis of training effects over time are dis-

played for each contextual cue condition: the predictive
condition in black points, and the non-predictive (shuffled)
condition—which provides little information (e.g. cues) to
learn from while doing the task–in grey points. The train-
ing effect appears to adjust each of the parameters over time
in a way that supports faster RTs, yet interestingly in dif-
ferent ways. Most notably, the TEA parameter, θ , for me-
chanical/perceptual RT processes, benefits equally by train-
ing across epochs during both conditions–which is a rather
plausible finding—as does the response caution / signal cri-
terion parameter, α . In contrast, there is a marked difference
across conditions in the benefit rate of the signal accumula-
tion parameter, γ , by training.
Furthermore, while each of the SW parameters appears to

be modulated by training, they differ in their rate of change
over time, and their onsets/magnitudes of diminishing re-
turns. For example, γ appears to benefit in a consistently-
increasing linear fashion from levels 1 to 8; while α and θ
speed benefits occur in uniquely different curvi-linear fash-
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ions, with different diminishing or zero-return onsets, respec-
tively near training points 5 and 7.
The right column of plots in Figure 2 provide model

goodness-of-fit checks to verify if the observed data quan-
tiles are appropriately fit by the SW. The top plot contains the
deciles of all N = 2158 distributions fit with the SW; as one
can see, nearly all of the fits match the observed deciles well
in a corresponding x = y fashion, with very few outliers. The
bottom plot provides the distribution of residuals for each of
the nine deciles across the 2158 cells fit; here it is shown that
most of the deciles are similarly well fit, with a slightly larger
variance for the deciles 7-9, which tend to also hold increas-
ingly larger RT magnitude and variation in the observed data.

Discussion
The utility of the SW distribution, to serve as a cognitive
model for certain response tasks by describing the data in the
context of accumulation to threshold, as well as its useful-
ness as an objective measurement tool for RT distributions,
was presented. Noteworthy and unique aspects of the SW,
which set it apart from other distributions that may be used
as RT distribution measurement tools, include its flexibility
to accommodate a number of distribution shapes; its three-
parameter decomposition of the mean, each parameter ac-
counting for a distinct distribution outcome; its ability to be fit
well during cases of few observations; and most distinctively
its unique ability to also describe the data via accumulation
to threshold.3

Important clarifications can be made to resolve confusions
between the SW distribution, particularly its accumulation
model characteristic, and more complex accumulation mod-
els such as the DDM, race and LBA models. Firstly, the SW
distribution is the only model of the three in which its param-
eters directly quantify the distribution of RTs, and simultane-
ously directly describe the RT data in the context of a latent
quantity accumulating to threshold. Secondly, it always con-
sists of only one accumulator modeling the response process,
with one threshold.
On the latent accumulator aspect of the SW, there are only

minor modifications which will deliver the researcher to one
of the three other prominent models: the DDM, race, and
LBA. Each of these three models have the same kind of accu-
mulator as in the SW: the DDM instead has two thresholds: a
lower and upper, to model two characteristic outcomes; and
hence allows for negative drift rates, e.g. γ < 0, to allow sub-
stantial observations on the lower boundary. The race model
has multiple instances of the same accumulator as the SW, to
model any number of characteristic responses, in which the
first accumulator that reaches the threshold wins. The LBA
has this same property of the race model, except the latent
quantity accumulates in a constant linear fashion (known as a
“random ray”), rather than as drift with random noise.

3Indeed other measurement distributions (e.g. ex-Gaussian,
Gumbel) may also provide excellent utility or fits of RT data. How-
ever their principal difference from the SW, is they do not possess
the ability to also describe the data by accumulation to threshold.

Thus all of these approaches are indeed very closely re-
lated. For example, the SW and DDM could be said to
constitute the very same supra-model: they both stem from
the same family process, the Wiener process, and as men-
tioned, arise from only subtle differences in parameter values
(see respectively Chapter 3, and pages 8–24, Chhikara, 1988;
Gerstein & Mandelbrot, 1964; Jones & Dzhafarov, 2014, for
more information); in which some parameterizations of the
Wiener process result in a closed-form probability density
function (e.g. the SW), while others will not (e.g. the DDM).
They are hence simply nested models, both using the same
kind of RWD, or Brownian motion process designed in (1).
Therefore in the context of an appropriate data application,
an attack or critique on the elements of one of these models,
such as the validity of the cognitive interpretation of this la-
tent Brownian motion process, may be considered an attack
on all three models.

A concrete issue of practicality however, worth mentioning
between simple models, such as the SW, that have one ac-
cumulator and one threshold for the observed response, and
more complex models that seek to have separate accumula-
tors, and/or thresholds for every response option, is the large
benefit of the SW in the context of the limitation of the data.
More specifically, the limitation of the number of observa-
tions available in the data, per experimental manipulation and
per response alternative, can be a problem that is exacerbated
much more quickly as one increases in the extra numbers
of accumulators and/or thresholds that more complex models
have. For example in our baboon data application, the depth
that we explore the experimental manipulations, estimating
individual parameters for each combination of them, by par-
ticipant, is a resolution that would not have been appropriate
for the other more complex models. This is because there
were insufficient amounts of observations for each response
alternative, per experimental manipulation, to drive the esti-
mation of the other models’ extra parameters that arise from
additional accumulators / thresholds; these models would be
attempting to model data, with far too many missing observa-
tions. Thus it is important to take into account the number of
observations per data cell sought to be analyzed: when select-
ing (1) an accumulator model variant, and (2) the depth that
one parameterizes the model across cells; e.g. having enough
observations (such as > 30) for each extra response option
modeled, per cell fit.

The limitation of the SW, for being applied to data with
many response alternatives observed per experimental manip-
ulation, is it lacks the ability to serve as a complete genera-
tive model for the full data. For example, considering data
with substantial amounts of both corrects and errors, the SW
can be applied separately to the corrects and errors. Here
it may serve as a distributional measurement tool to quan-
tify distribution differences across conditions, and/or deliver
a latent accumulation account across experimental manipula-
tions, conditional on the respondent providing that observed
(correct or error) response. However in this case, the SW
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cannot serve as a full generative model, for example to pro-
duce near the same number of observed number of corrects
and errors, by only knowing the parameters alone, and not
how many were corrects and errors were observed in the first
place. In contrast, a model such as the DDM, race, or LBA,
can not only serve to account for differences between the ex-
perimental manipulations, but also as a complete generative
model for the data, by having the a priori probability of a cor-
rect or error response, already pre-coded in the model, by be-
ing in the respective drift rates for each experimental manip-
ulation; and thus are excellent tools for these multi-response
option cases.
Thus in each model having its unique assumptions, ben-

efits, and restrictions, it is up to the researcher to select the
model(s) that best suit his or her research aims within the
particular application. While there are certainly appropriate
situations and data that could considerably benefit from a SW
analysis approach, currently there are very few publications
in the psychological literature that utilize the distribution. We
hope to have advocated the distribution’s use, as well as to
have facilitated a deeper understanding of the SW, and its po-
sition in the context of accumulation modeling.
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