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Abstract

The speed-accuracy trade-off (SAT) effect refers to the behav-
ioral trade-off between fast yet error-prone responses and ac-
curate but slow responses. Multiple theories on the cognitive
mechanisms behind SAT exist. One theory assumes that SAT
is a consequence of strategically adjusting the amount of evi-
dence required for overt behaviors, such as perceptual choices.
Another theory hypothesizes that SAT is the consequence of
mixing different task strategies. In this paper these theories are
disambiguated by assessing whether the fixed-point property
of mixture distributions holds, in both simulations and data.
I conclude that, at least for perceptual decision making, there
is no evidence for mixing different task strategies to trade off
accuracy of responding for speed.
Keywords: speed-accuracy trade-off; SAT; fixed-point prop-
erty; fp; mixture distributions; evidence accumulator models;
diffusion model.

Introduction
In sports, acting fast is often as important as acting precise.
For example, a basketball player trying to make the winning
shot in the dying seconds of the game may be satisfied with
less precision in his attempt given the severe time pressure
of the clock. On the other hand, if he has just been awarded
a free throw without any time pressure, accuracy in his at-
tempt is vital. In experimental psychology, the ability to
trade speed of responding for accuracy of responding is re-
ferred to as the speed-accuracy trade-off (SAT, Schouten &
Bekker, 1967; Wickelgren, 1977). SAT-related effects have
been shown in many different experimental paradigms (e.g.,
Dutilh et al., 2011; Meyer et al., 1988; Wagenmakers et al.,
2008).

Response Caution Adjustment
The most prominent theory about the neural and cognitive
mechanisms of SAT is Response Caution Adjustment (RCA,
Bogacz et al., 2010). This view entails that SAT is a con-
sequence of strategically adjusting the amount of evidence
required for overt behaviors, such as perceptual choices. Ac-
cording to this view, perceptual choice behavior can be best
described as the accumulation of evidence for each choice
alternative. That is, given a particular stimulus, the deci-
sion maker accumulates over time which alternative is most
likely to be the correct response. A response is then provided
once a certain minimal level of evidence is exceeded (Figure
1A). Computational models that quantify this process have
accounted for many different aspects of decision-making be-
havior (for reviews see Mulder et al., 2014; Ratcliff & McK-
oon, 2008), including SAT.

SAT occurs in the accumulator framework through re-
sponse caution adjustment (Figure 1B). If a decision maker

is pressed for time (or has any other reason why speed-of-
responding is important), the minimal level of evidence re-
quired for a response may be set to a lower value. If a decision
maker is more cautious, then the minimal evel of evidence
may be set to a higher value. A high value automatically re-
sults in longer decision times – and hence longer response
times (RT) – since the amount of evidence required to make a
decision is larger, and thus takes longer to accrue. However,
because of the stochastic nature of the evidence accumula-
tion process, the increased decision time is accompanied by a
larger probability of being correct. This is because the prob-
ability of accumulating enough evidence for the incorrect re-
sponse alternative is lower as the threshold is set higher.

Mixing Task Strategies
The RCA theory of SAT has been tested in many different
studies (e.g., Rae et al., 2014; Mulder et al., 2010, 2013), and
in addition is also consistent with many neuroscientific find-
ings (Boehm et al., 2014; Forstmann et al., 2008, 2010; Ho
et al., 2012; Van Maanen et al., 2011; Winkel et al., 2012).1

Nevertheless, alternative theories have been proposed about
the nature of SAT. However, no model comparison between
different theoretical proposals for SAT has so far been at-
tempted.

One alternative theory of SAT that warrants a formal com-
parison with RCA is what I refer to here as the Mixing Task
Strategies (MTS) theory. This theory entails that participants
switch between two modes of responding during a task, de-
pending on the speed and accuracy requirements (Ollman,
1966; Meyer et al., 1988). Under accuracy stress, partici-
pants respond through a stimulus-controlled process, which is
thought to yield optimal – yet relatively slow – performance.
Under speed stress, participants are thought to recruit an ad-
ditional guess process on a large proportion of trials. Because
this is hypothesized to be a fast process, the average response
times decreases. However, because the guess process leads
to chance performance on a certain proportion of trials, accu-
racy drops as well. This mixture idea lies at the heart of more
modern models of SAT, such as the phase-transition model
by Dutilh et al. (2011) and a recent ACT-R model of SAT
(Schneider & Anderson, 2012).

The essential property of the Mixing Task Strategies theory
is that participants use two modes of responding, but in differ-
ent proportions. In fact, a strong prediction is that any exper-

1For completeness, it should be mentioned that many of these
formal modeling approaches also required the “non-decision time”
parameter to vary between speed-stressed and accuracy-stressed
conditions.

214



A

A
cc

um
ul

at
ed

 E
vi

de
nc

e

Time

Response threshold

Time of choice

B

A
cc

um
ul

at
ed

 E
vi

de
nc

e

Time

Response threshold

Time of choice

Figure 1: A. An illustration of two evidence accumulation processes, one depicted by a solid line, one by a dashed line. The
process that reaches the response threshold the earliest is selected. B. A decreased threshold (panel B vs A) may yield a faster,
possibly incorrect, choice.

imental condition that has intermediate speed and accurate
stress, should have an in intermediate mixing proportion of
the two modes as well. In this paper will test this strong pre-
diction for a simple perceptual choice task (Forstmann et al.,
2008) using the fixed-point property of mixture distributions
(Falmagne, 1968).

Fixed-Point Property
The fixed-point property (Falmagne, 1968) is a general prop-
erty of mixture distributions with two base distributions, that
can be easily applied to response time data (Van Maanen
et al., 2014). Because the probability density of a binary mix-
ture distribution is always the weighted sum of the densities
of the two base distributions, it follows that there is (at least)
one value that has the same density, independent of the mix-
ture proportions (for a proof, see Falmagne 1968; reiterated
in Van Maanen et al. 2014). In terms of mixture distributions
of response times, this implies that there will be one RT for
which the probability of providing a response at that particu-
lar time is equal for all mixtures.

The fixed-point property is illustrated in Figure 2. The fig-
ure shows the probabilty densities of four binary mixture dis-
tributions. Each is a mixture of two shifted Wald distribution
functions with common scale (λ = 5000) and shift (θ = 100),
but different means (µ1 = 300 and µ2 = 500).2 The legend in
Figure 2 refers to the mixture proportion, here represented as
the proportion of the data that comes from the second base
distribution (with µ2 = 500). As is clear from the figure, all
densities cross each other at a common RT value, referred to
as the crossing point. In the Results section below, we will
test for the presence of the fixed-point property in empirical

2I chose the shifted Wald distribution function as an example
because of its wide applicability in RT data (e.g., Anders et al., 2015;
Heathcote, 2004), but the fixed-point property does not depend on
the choice of distribution function.

data by assessing whether across participants, the crossing
points of pairs of distributions with different mixture propor-
tions are indeed the same.
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Figure 2: Binary mixture distributions with different mixture
proportions always cross at a common RT.

The fixed-point property is predicted by the MTS theory of
SAT. That is, if observed RT distributions in SAT are a mix-
ture of the guess process and the stimulus-controlled process,
and the mixture proportions differ as a result of the amount of
speed stress, then the fixed-point property should be present
in the data. On the other hand, the fixed-point property is
not predicted by the RCA theory. These predictions will be
fleshed out in the next section.

Simulations
To understand which of the theories of SAT predicts the fixed-
point property in RT distributions, I generated data under the
two theories, for three levels of speed stress. In the RCA
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simulation, all trials are drawn from a simple randon-walk
process with positive drift (cf. Bogacz et al., 2006), and the
speed-stress levels are simulated by three different settings of
an absorbing boundary. In the MTS simulation, only a pro-
portion of the trials is drawn from that random-walk process,
with the remaining trials drawn from a guess process. The
three levels of speed-stress are simulated by different mixture
proportions.

Response Caution Adjustment Simulation
For the RCA simulation I used a pure drift diffusion model
(Bogacz et al., 2006):

dx = µdt +N(0,σ2dt) with x(0) = a/2. (1)

The speed of evidence accumulation is represented by the
constant drift µdt, with standard deviation σ. On each trial,
a decision is made once the evidence x exceeds one of two
boundaries at x = 0 and x = a. The response time is then de-
termined by the time when one of the boundaries is crossed,
plus a fixed non-decision time intercept t0. Similar models
have been applied to many decision making paradigms to
study the cognitive (e.g., Donkin & Van Maanen, 2014; Mul-
der et al., 2013; Palmer et al., 2005; Ratcliff, 1978; Van Maa-
nen et al., 2012b,a) and neural (e.g., Forstmann et al., 2008,
2010; Ratcliff et al., 2009) mechanisms underlying choice be-
havior. In particular, this model has been used extensively
to study SAT. Overall, SAT has been linked to changes in
the boundary parameter a (e.g., Forstmann et al., 2008, 2010;
Mulder et al., 2013; Van Maanen et al., 2011; Winkel et al.,
2012).

To generate RT distributions for this model, I simulated
10,000 trials in each condition, with the following parame-
ters: µ = 0.2;σ = 0.3; t0 = 200;a1 = 0.3;a2 = 0.6;a3 = 0.72.
Table 1 presents mean RTs for correct responses and accuray
of these simulations, to illustrate that indeed a SAT is simu-
lated.

Table 1: Summary of simulated data.

Model Mean RT (ms) Accuracy
RCA
- a1 = 0.3 458 .67
- a2 = 0.6 1103 .80
- a3 = 0.72 1416 .84
MTS
- p1 = 0.6 885 .68
- p2 = 0.75 987 .72
- p3 = 1.0 1104 .80

Figure 3A displays kernel density estimates of the RT dis-
tributions for correct responses under the RCA theory. The
standard deviation of the smoothing kernel is set at 1,000 ms,
above the minimal value of 1 standard deviation in the data,
as suggested by Van Maanen et al. (2014). It is clear that these

density functions do not all cross at the same RT. Figure 3B
shows this even clearer. Here, the differences between each
pair of speed-stress levels (i.e., boundary settings) are shown.
The RTs where these differences are zero are the crossing
points. The absence of the fixed-point property in this simu-
lation is apparent from the multiple crossing points.

Mixing Task Strategies Simulation
The MTS simulation generates data from a stimulus-
controlled and a guess process. The stimulus-controlled pro-
cess is identical to the RCA simulation, except that the bound-
ary setting of the pure drift diffusion is always set at a = 0.6.
The guess process is simulated by a random draw from a
Bernoulli process representing the choice, and an indepen-
dent draw from a normal distribution with mean µguess = 400
and σguess = 100 representing the response time. Of note is
that the mean RT of the guess process is below the mean RT
of the stimulus-controlled process, as it represents the faster
speed-stressed trials (see the mean RT for the RCA simula-
tion with a2 = 0.6 in Table 1).

Table 1 again presents mean RT for correct responses as
well as accuracy for the simulations under the MTS theory.
This shows that MTS is indeed consistent with a general SAT
effect. Figure 3C shows the kernel density estimates of the
RT distributions (with the same smoothing kernel as for the
RCA simulations); Figure 3D the density differences. These
figures confirm that the MTS theory predicts a fixed-point in
the data, as all crossing points in Figure 3D align.

Analysis of Behavioral Data
Simulation of an RCA and an MTS model suggest that a
fixed-point in the data is consistent with the MTS theory, but
not with the RCA theory. To disentangle these alternative
accounts in the domain of perceptual decision making, I re-
analyzed data from Forstmann et al. (2008). In this study,
participants were asked to perform a random-dot motion task
while being stressed for either speed, accuracy, or both on a
trial-by-trial basis. This task has been used extensively in the
context of SAT (e.g., Palmer et al., 2005; Forstmann et al.,
2008; Van Maanen et al., 2011; Mulder et al., 2013) and SAT
effects have been explained by the RCA theory. However, a
formal comparison with the MTS theory has never been per-
formed. In this particular experiment, the presence of three
levels of speed-stress enables a test of the MTS hypothesis
that the fixed-point property holds in the data. If the MTS the-
ory is correct, then the proportion of guess responses should
be lower for accuracy-stressed trials than for speed-stressed
trials. Stressing both speed and accuracy (or rather not stress-
ing anything) should yield a proportion of guess responses
that is in between these two extremes.

The Task
In the random-dot motion task, participants had to indicate
from a cloud of semi-randomly moving dots what the over-
all direction of motion is. Prior to each stimulus, participants
were presented with one of three cues for 1,000 ms. The cues
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Figure 3: A. Kernel density estimates of three simulated conditions under the Response Caution Adjustment theory; lines
represent different threshold settings (a). B. Density differences of each pair of conditions from A. C. Densities of three
simulated conditions under the Mixing Task Strategies theory; lines represent the different proportions p of trials that are form
the stimulus-controlled process. D. Density differences of each pair of conditions from C.

could be either “SN” (referring to the German “Schnell”),
“NE” (“Neutral”, stressing neither speed nor accuracy), or
“AK” (“Akurat”). After a variable interval of 500 ms, the
stimulus appeared for another 1,000 ms, followed by 350 ms
feedback. Feedback reflected the previously presented cue.
Thus, when the cue was either “SN” or ‘’NE”, feedback was
given on response speed; when the cue was either “AK” or
“NE”, feedback was given on response accuracy. The exper-
iment consisted of 840 trials, equally distributed across the
conditions. A total of 20 participants took part in the exper-
iment (see Forstmann et al. 2008 for more details on the ex-
perimental procedure).

Results
To assess the presence of the fixed-point property, I only ana-
lyzed correct responses (additional simulations showed that
the influence of incorrect responses on the crossing points
was marginal). The kernel density estimates were computed
using a kernel with a standard deviation of 300 ms. Figure
4A and B illustrate that there is no fixed-point in the data. For
these figures I aggregated all data points to compute one den-
sity function per condition. However, to formally assess the
presence of the fixed-point property would be to test within-
subjects whether the crossing points are the same (Van Maa-
nen et al., 2014). Because standard frequentist analyses can
only test for the presence of a difference between conditions,
we prefer to apply Bayesian statistics (Rouder et al., 2012). A
Bayesian ANOVA (Rouder et al., 2012) quantifies the prob-
ability that the observed crossing points are sampled from
one underlying population (i.e., when the fixed-point prop-

erty holds) or are sampled from multiple populations (when
the fixed-point property does not hold).

Crossing points of the density differences per condition and
participant were computed and are presented in Figure 4C. A
Bayesian within-subjects ANOVA yields a Bayes factor of
53 in favor of multiple populations of crossing points. This
means that the data are 53 times more likely to be generated
by such a model than by a model assuming one true popula-
tion. This result is clearly not in agreement with the fixed-
point property, and by extension not in agreement with the
MTS theory.

Discussion & Conclusion

The data from Forstmann et al. (2008) is not consistent with
an important signature of binary mixture distributions. The
absence of the fixed-point property therefore speaks against
a MTS theory of SAT. A Bayesian analysis shows that it is
in fact 53 times more likely that the data are not from bi-
nary mixture distributions. This result is consistent with an
RCA theory of SAT. To some extent, this is not surprising,
given the excellent fits of cognitive models that implement
the RCA theory, both on this data set as well as on related
data (e.g., Forstmann et al., 2010; Van Maanen et al., 2011;
Mulder et al., 2010, 2013). However, no formal model com-
parison had so far been attempted. Theoretically, the MTS
theory could have generated data that would be excellently fit
by RCA models (cf. model mimickry, Ratcliff, 1988; Ratcliff
& Smith, 2004). The phase-transition model of Dutilh et al.
(2011, an instance of MTS), has been compared to other mod-
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Figure 4: A: Densities of the correct RT distributions in the data. B. Density differences of each conditions pair from A. C.
Boxplots indicating the distribution of crossing points per condition pair.

els, but the authors did not include an RCA model in their
model comparison. Therefore, although they argue against
RCA, it cannot be excluded based on their study.

It is entirely possible that the effects that are collectively re-
ferred to as SAT effect depend on different cognitive mecha-
nisms. For example, if presenting a speed-stress cue results to
increased preparation (e.g., motor preparation, Rhodes et al.
2004) independently of which mode is actually used on that
specific trial, then a fixed-point would also not observed. This
is because the observed response time distributions are not
pure mixtures of two base distributions, but rather constitute
multiple processes.

Additionally, an experimental paradigm that promotes true
guessing behavior may indeed still best be explained by MTS,
while an experiment where guessing never leads to satisfac-
tory behavior may be best explained by RCA. Under this
view, the best explanation of SAT may be a mixture of
RCA and MTS. Nevertheless, the current model and analy-
ses strongly suggests an important role for adjusting control
when people are confronted with situations in which the im-
portance of response speed varies.

To disentangle the MTS and RCA theories, I took advan-
tage of the different predictions that these two models make
with respect to mixtures of behaviors. The fixed-point prop-
erty provides an excellent tool to test these predictions.3 Sim-
ilar predictions may be found in other domains where multi-
ple strategies for a task may (or may not) be expected. Ex-
amples include multiple reasoning strategies that may be in-
volved in reasoning tasks (Meijering et al., 2010) or varying
proportions of fast-and-automatic processing and slow and
deliberate processing, such as can be found in motor sequence
learning (Rhodes et al., 2004) or developmental transitions
(Van Rijn et al., 2003). For these kinds of response time data,
the presence or absence of the fixed-point property seems to
be an easy test of multiple competing task processes.

3Van Maanen et al. (2014) includes R code for testing the fixed-
point property.
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