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Abstract 

A number of frameworks for capturing insight phenomena 
have been proposed, but there are no executable models of 
knowledge-lean insight problem-solving. Here, an ACT-R 
model is presented for the nine-dot problem, which 
implements the Criterion for Satisfactory Progress theory for 
this problem. The model has two main components: a 
mechanism for searching for possible moves in the problem 
representation, and a mechanism for expanding the search to 
discover new moves not immediately available in the initial 
problem representation. The model accounts for key 
phenomena including impasse, fixation and the ‘aha’ moment, 
as well as predicting the relative difficulty of different 
problem variants.  
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Introduction 
Recent theories of insight are of two kinds: knowledge-
based accounts such as Representational Change Theory 
(RCT: Knoblich et al., 1999), in which problem difficulty is 
mediated by inappropriate knowledge; and strategic 
accounts such as Criterion for Satisfactory Progress theory 
(CSP: MacGregor, Ormerod, & Chronicle, 2001), in which 
problem difficulty is mediated by search for moves that 
maximize progress towards a goal. Most researchers agree 
both knowledge and strategy are essential for explaining 
insight (e.g., Kershaw & Ohlsson, 2004), and integrated 
frameworks have been proposed (e.g., H�lie & Sun, 2010). 
However, progress is hampered by a lack of executable 
models of knowledge or strategy mechanisms. 

An ACT-R model of 9-dot problem-solving 
Here we present an ACT-R implementation of CSP for the 
9-dot problem (“Draw four connected straight lines to 
cancel 9 dots arranged in a 3x3 grid”). The problem is 
notoriously difficult, with solution rates < 5%. Although 
knowledge-based accounts predict that a given first line 
extending beyond the array should serve as a solution cue, a 
first line remaining within the square leads to higher 
solution rates. An internal first line leads to earlier criterion 
failure, which motivates change of search strategy 
(MacGregor et al, 2001, Expts. 4-5). Our ACT-R model 
implements two heuristics: maximisation and minimisation 
(Chronicle, MacGregor, & Ormerod, 2004; MacGregor et 
al., 2001; Ormerod et al, 2013) to solve the problem.  

Search through maximisation 
Under maximisation, individuals select moves that appear 
most promising to achieve a hypothesised goal. Progress is 
monitored against a criterion derived from the problem 
statement. With the nine-dot problem, an initial line 
connecting three dots represents an implementation of a 
maximising heuristic because individuals cancel the most 
dots in a single move. Progress made with this move is 
evaluated against a criterion equal to the number of 
remaining dots divided by the number of remaining lines.  

To implement maximization, the model searches for 
previously unattended and uncancelled dots at random and 
tests how many are cancelled by each move between dots. If 
it cancels more than the current best move, this move is 
stored in the imaginal buffer (where problem representations 
are stored). Then the cycle repeats until all unattended dots 
are inspected, when search for another one fails. This 
triggers a reset of all uncancelled dots to ‘unattended’.  

The line stored in the imaginal buffer represents the 
move that maximises progress. This line is checked against 
the progress-monitoring criterion. This criterion derives 
from two main sources of information in the initial 
representation: the number of dots and number of lines to be 
drawn. The criterion is equal to the number of remaining 
dots divided by the number of remaining lines. In the 
production (P PROMISING), if the number of cancelled 
dots is greater than the criterion, then the move is labelled as 
‘promising’ (status slot of the imaginal chunk). Otherwise, 
in the production (P EXHAUSTED), there is criterion 
failure and the move is categorized as ‘exhausted’ in the 
‘status’ slot of the imaginal chunk, and another best move is 
looked for. If the move has a promising status, the model 
draws a line. This is the first move. After a line is drawn, the 
model begins again the first cycle selecting previously 
unattended and uncancelled dots at random. The first stage 
stops either when there are no more dots to be cancelled or 
when the move count has reached the value of four and thus 
four moves are completed: except that it never does, without 
stage 2, the relaxation of the minimisation heuristic. 

Discovery through minimisation 
According to the minimisation heuristic, people limit a 
problem representation to the minimum required to achieve 
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satisfactory progress toward a goal. In the 9-dot problem, 
minimisation constrains the initial representation to the dot 
array presented in the initial problem (a grid of 3 x 3 dots). 
Relaxation of minimisation is triggered by criterion failure. 
Once relaxed, parsing the properties of previously explored 
moves, to identify invariants (cf. Kaplan & Simon, 1990) or 
unique move properties, derives new knowledge that can be 
used to infer possibilities for the discovery of new moves. 

The model described in the first stage fails to find a 
criterion-satisfying fourth move, because the only places in 
the initial problem array correspond to dot coordinates. To 
‘learn’ new places to look for moves, the minimisation 
heuristic needs to be relaxed. Relaxing the minimisation 
heuristic invokes a move parser that analyses the best moves 
produced to date and extracts properties that may enable 
discovery of new move types. In the four-line 9-dot 
problem, properties include space between known points, 
line lengths, and angles between lines. The model then uses 
these properties, in an order ranked according to principles 
of commonality, to discover new options to the current 
problem space based on inferences drawn from this 
knowledge (e.g., “if the most maximizing move currently 
has an average unit distance between cancelled dots of 1 
unit, extend the line by 1 unit as a putative new move”).  

In this second stage, the model compares the properties 
of the lines drawn at the first stage. In the production (P 
COMPARE) it notices differences and invariants in terms of 
X and Y coordinates among the ‘best moves’ drawn. Based 
on these detected units of invariance among moves, the 
model, through the production (P EXTEND), uses the 
extracted units of invariance to extend the length of the first 
drawn line. In this way, the knowledge about properties 
extracted by comparing lines allows the problem space to be 
expanded to include (non-dot) spaces. 

Phenomena captured by the model 
Runs of the model provide ordinal differences between 
problem variants that are consistent with the published 
empirical literature on the problem. Like human solvers, it 
struggles to solve the problem (demonstrating impasse): in 
trials invoking 50 runs of the two-stage model, solution 
rates are less than 5%. It also returns, after attempts that 
extend beyond the 3x3 dot array, to exploring moves within 
the array (demonstrating fixation).  However, it does solve 
on occasion (demonstrating the ‘Aha’ experience).  

Also like human solvers, it easily solves (within 2 runs) 
the 13-dot variant in which the complete problem space is 
available in the initial representation, and finds solutions to 
12- and 11-dot variants, where non-dot gaps within the dot 
array must be discovered, with increasing complexity but in 
runs < 10 (McGregor et al, 2001, Expt. 2). Finally, the 
implementation captures the difference between variants in 
which the first line is given, extending outside or within the 
initial dot array (McGregor et al, 2001, Expts. 4 and 5), with 
significantly fewer runs required for the latter than the 
former to discover solution, p < .01.  

Discussion 
The ACT-R implementation of CSP theory for the 9-dot 
problem demonstrates basic phenomena of insight captured 
by two simple heuristics governing search and expansion of 
an initial problem representation. Maximisation is a hill-
climbing heuristic, while minimisation is a forcing function 
for discovering new problem knowledge based on recent 
discoveries of solution attempt properties. No additional 
knowledge is required, suggesting knowledge-rich accounts 
of insight (e.g., Knoblich et al., 1999; Kershaw & Ohlsson, 
2004) may be overly elaborate for this particular problem.  

Much remains to be done to provide a full implementation 
of knowledge-lean insight problem solving. Critically, the 
properties of the initial problem representation are hard-
wired. Our hope is that the mechanism for minimisation can 
also be applied to parse the problem statement to build an 
initial representation. Building the ACT-R implementation 
raised new questions, such as whether maximization should 
be optimal (finding the very best move each run) or 
satisficing (finding the first criterion-satisficing move). 
These questions remain to be answered, but the growing 
ACT-R implementation provides a vehicle for doing so. In 
future work, we aim to extend the same principles to 
modeling other knowledge rich problems, such as the six-
coin problem (Chronicle et al, 2004).  
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