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Abstract

An important application of cognitive architectures is to provide 
human performance models that capture psychological 
mechanisms in  a form that can  be “programmed” to predict task 
performance of human-machine system designs. While many 
aspects of human performance have been successfully modeled 
in  this approach, accounting  for multi-talker speech task 
performance is a novel problem. This paper presents a model  for 
performance in a two-talker task that incorporates concepts  from 
the psychoacoustic study of speech perception, in particular, 
masking effects and stream formation.

Keywords: Cognitive architecture; two-channel speech; 
auditory perception; auditory streams

Introduction
A classic problem in cognitive psychology is the "cocktail 

party effect" in which a person is surrounded by several 
people speaking simultaneously,  and is nonetheless able to 
follow a single speaker well enough to maintain a 
conversation, although some information about what the 
other speakers are saying appears to be available under 
some conditions. The early study of these phenomena (e.g. 
Cherry, 1953) led to a body of additional studies and 
theoretical work that defined the current concept of selective 
attention; the human listener was said to be able to 
selectively attend to one of the signal sources and "filter 
out" the others. The most common experimental paradigm is 
that the subject must listen to simultaneous speech inputs 
from two or more talkers (human speakers), but respond to 
the information provided by only one of them. Some more 
recent research over the last decade has used more precise 
procedures to help characterize the determinants of 
performance; in particular many experiments have been 
done using the coordinate response measure (CRM) speech 
corpus which represents a highly simplified form of the 
command and control messages used in military settings 

(Bolia, Nelson, Ericson, & Simpson, 2000).
The mainstream psychoacoustic work on this problem 

applied the mathematical tools of signal analysis that have 
been successful in characterizing human ability to detect 
and discriminate sounds. A less formal but influential 
concept was auditory streams (Bregman, 1990), the notion 
that we perceive separate sound sources based on the 
detailed properties of the incoming sounds. In a two-talker 
task, each talker would be perceived as a stream, and the 
listener’s task is to determine which sounds go with which 
stream and choose the appropriate response. This process 
must involve a combination of perceptual mechanisms and 
cognitive strategies. However, psychoacoustic accounts of 
the task have focussed on "front end" processes of signal 
detection and processing and did not have a well-defined 
way to take into account the possibly complex "back end" 
processes of cognitive strategies involved in the task. In 
contrast,  cognitive architecture research developed powerful 
theoretical mechanisms for the "back end" processing, 
especially using production systems, but  tended to ignore 
difficult details of perceptual processes.

The present paper combines mathematical models of 
speech perception with a cognitive architecture to model 
human performance in a two-talker listening task.  EPIC 
(Executive/Process-Interactive Control) is one among 
several architectures whose goal is to provide an integrated 
account of human abilities and limitations in perception, 
cognition, and action.  A psychoacoustic speech perception 
model was incorporated into the EPIC cognitive architecture 
to provide an integrated account of performance in a well-
studied two-talker speech perception task. We devised a 
relatively simple speech perception model and a strategy 
which together account for important factors that determine 
performance. 

An earlier form of this model appears in Kieras, 
Wakefield, Thompson, Iyer, & Simpson (2014); the model 
presented here has the same strategy component, but the 
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perceptual models are considerably improved, taking into 
account how pitch differences affect detection and stream 
segregation. The result is a model with far fewer parameters 
that must be estimated from the data.  A detailed comparison 
of the improved perceptual model with the previous one is 
not possible in the available space here; the reader can 
compare this model with the one in Kieras, et al (2014).

Following a review of the two-talker CRM listening task, 
an overview of EPIC will be presented and key extensions 
of the auditory processing module will be introduced. 
Within the framework imposed by these extensions, a model 
for the two-talker CRM listening task will be proposed and 
fit to the human data.

Replication of a Two-Talker Dataset
 The CRM corpus is a collection of recorded command 

utterances in the form of 
Ready <Callsign> go to <Color> <Digit> now 

spoken by one of four females or four males,  where the 
Callsign, Color, and Digit are drawn from sets of 8, 4,  and 8 
items, respectively.  The corpus was recorded and edited to 
maintain a high degree of temporal overlap among the 
spoken Callsigns, Colors and Digits (Bolia, et. al., 2000).

In the two-talker CRM listening task, participants respond 
to commands by selecting the appropriate Color/Digit pair 
from a display. A particular Callsign is designated as the 
Target Callsign, which was always Baron in the studies used 
in this paper. On each trial, a Target message is drawn from 

those utterances bearing the Target Callsign and is presented 
simultaneously with a randomly selected Masker message, 
with the restriction that the Callsign, Color and Digit of the 
Masker differ from those of the Target.  The participant thus 
hears two messages whose words are simultaneous, and 
must choose the color-digit pair associated with the Target 
callsign, and was instructed to ignore the Masker message. 
The responses are scored as matching the Target message, 
the Masker message, or Neither.  

An important study by Brungart (2001) stimulated our 
first modeling.  He manipulated the acoustic similarity of the 
two talkers, varying from Different Sex (DS), to Same Sex 
(SS),  to Same Talker (ST),  and also manipulated the 
relative loudness of the two messages, with a Signal-to-
Noise ratio (i.e. the Target-to-Masker ratio) ranging from 
-12 to +15 dB. This study is important because in addition 
to reporting the proportion of completely correct responses 
(both Color and Digit are Target), he also reported the 
proportions of responses that matched Target, Masker, or 
Neither separately for Color and Digit. 

Rather than show his results in this paper, however, we 
present the results for a methodologically improved 
replication which is very similar in design and results to 
Brungart (2001). The replication followed the conditions 
and procedures of Brungart (2001) in all respects except 
two: (1) The SNR, which ranged from -12 to +15 dB in the 
original study, was shifted to a lower range (-18 to +9 dB) in 
the interest of studying performance at SNRs closer to 
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Figure 1. Observed (solid points and lines) and Predicted (open points and dotted lines) proportion of  responses as a function of SNR and 
talker similarity.  Top panel shows Color responses, bottom panel  shows Digit responses. In  order from the top down, the curves  are as 
follows: Blue curves with diamond points are for Target  responses, black curves with  circle points are for completely correct responses 
(both color and digit from the Target), and are the same in the top and bottom panels; red curves with square points  are for Masker 
responses, and green curves with triangles for neither  Target nor Masker.  Error bars  show 95% confidence intervals for the means 
averaged over individual subject proportions.

Different Sex Same Sex Same Talker

Different Sex Same Sex Same Talker
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masked detection thresholds; (2) the replication clarified the 
task instructions with a point reward system for correct 
performance,  and provided performance feedback at the end 
of each trial and during the experiment. 

Results
The six panels of Figure 1 show these somewhat complex 

experiment results as the observed points (solid points and 
lines; the predicted points will be explained later).  Each 
panel plots the proportion of Target, Masker, and Neither 
responses as a function of the signal-to-noise (SNR) ratio  in 
dB. The upper and lower panels display the proportion for 
Color and Digit responses separately. In addition, the panels 
show the proportion of Both-Correct responses in which 
both Color and Digit are from the Target message.  These 
black curves are the same in the upper and lower panels. 
The left-to-right panels display the results based on the 
similarity of the Target and Masker talkers. From left to 
right, the stimulus conditions are Different Sex, Same Sex 
but different talkers, and Same Talker. 

The basic effects are as follows: overall, with increasing 
positive SNR, the completely correct and Target Color and 
Digit responses are chosen more often, and Masker and 
Neither content are chosen less often. The overall 
performance when the messages are delivered by Different-
Sex talkers is better than that for Same-Sex talkers, which is 
turn is better than that when the two messages are from the 
Same Talker. For the Same-Sex and Same-Talker 
conditions, accuracy is very poor at very low (negative) 
SNRs, but then improves, and then declines again in the 
vicinity of 0 dB SNR, and then improves again. 

A key empirical fact is that the incorrect responses were 
almost always from the Masker message, which places a 
basic constraint on the cognitive processes in any model,  in 
that it implies that Masker message content was being 
perceived and remembered, and then chosen as a response, 
rather than being simply filtered out,  as would be expected 
from a simple selective attention model.

Accounting for the Phenomena
To date, a theoretical account of the two-talker CRM 

results remains incomplete.  Discussions have focused on 
the relative importance of informational masking over 
energetic masking, the roles of selected and divided 
attention, and the formation and maintenance of auditory 
streams.  However, none of these concepts have been 
operationalized to the point of providing strong predictions 
of experimental outcomes. What follows is an attempt to 
help bridge this gap.

The focus of our work was to account for these results in 
terms of a basic concept of human cognitive architecture 
and a quantitative model based on that concept.  The 
resulting model incorporates mechanisms that resemble both 
energetic and informational masking, but do so with 
considerably more theoretical precision; most importantly, 
the strategy that the subject follows to perform the task is 
directly represented, and this turns out to be critical in 

accounting for the specific effects in this data.

The Architecture and Model
An EPIC architecture model comprises a simulated task 

environment which interacts with a simulated human; the 
architecture describes the fixed components of the simulated 
human, controlled by a task-specific strategy represented as 
production rules. Due to space limitations, the usual 
description of the architecture is not provided here; see 
Meyer and Kieras (1997, 1999) or Kieras (in press) for more 
discussion. The focus of this presentation is on the 
mechanisms of the auditory processor that have been added 
to the architecture, and the production-rule strategy for the 
task.

Model Summary
The application of a cognitive architecture to 

multichannel speech processing is novel, and so needs to be 
presented with some detail, but for brevity, low-level 
representational issues are not presented here.  Rather, the 
emphasis is on the conceptual design of the architecture and 
model components, especially the auditory processor, taking 
into account that at this time many processes have to be 
“black boxed”. The following is a compact description of 
the architecture and model components and processing 
involved in the two-talker CRM task,  flowing from input to 
response. In some of what follows, the description is 
somewhat more complex because the mechanism is general 
enough to apply to more than two talkers. 

Speech auditory input.  Each utterance is pre-parsed into 
six segments corresponding to words (with go to being 
treated as a single word). The segments from the different 
sources are assumed to arrive at the auditory processor 
simultaneously and are each perceived as individual 
auditory events. Each segment pair is processed in order of 
arrival. 

Auditory perception constructs auditory objects based on 
properties of the physical input. There are two kinds of 
auditory object: word objects represent individual perceived 
words that have a temporal duration; stream objects 
represent perceived sound sources for these word objects. 

Word objects. Word objects have a variety of properties, 
but for the purposes of this model, they may or may not 
have content,  which is the recognized semantic item (e.g. 
red); this allows for a word to be “heard” but not 
recognized. Words also have stream attributes,  which in this 
model are average loudness level (specified in dB) and 
average pitch (in semitones, where the number of semitones 
is defined as 12·log2(pitch in Hz)), both averaged over the 
duration of the word. Semitones provide a logarithmic scale 
for pitch, analogous to decibels for loudness. This model 
assumes that the stream attributes are always perceived.1

Whether the content of a word object is recognized in the 
presence of the other word objects is assumed to be a basic 
masking phenomenon. The probability of content detection 
depends on the SNR, that is, the loudness level of the word 

1 For simplicity, we are assuming that perceived pitch and loudness correspond to physical semitones and dB.
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relative to the other word objects that are simultaneously 
present, and the pitch difference between the two word 
objects. With respect to the latter, studies show that 
discrimination of simultaneous vowel sounds improves with 
pitch difference, though increasing the difference beyond 
about 4 semitones produces no further improvement 
(Assmann & Summerfield,  1990). This effect was 
incorporated in the model by computing an Effective SNR 
that is the weighted sum of the loudness difference in dB 
(the SNR) and the pitch difference in semitones capped at 4.

Stream objects and stream tracking. The stream objects 
also have attributes of loudness and pitch, but these 
represent the overall properties of the perceived sound 
source. In this model, a stream object carries the mean 
loudness and mean pitch of the words associated with the 
stream. For example, a typical female talker will be 
represented as stream percept with a higher mean pitch 
property than that for a typical male talker.

The auditory perceptual processor assumes that there are 
as many stream objects as input sources, each with a unique 
but arbitrary StreamID attribute, and attempts to assign each 
incoming word object to one of the streams, using the 
stream-related attributes of loudness and pitch to do so. 
Once the assignment is done, the stream percepts are 
updated to reflect the loudness and pitch properties of the 
words assigned to them, and the next pair of word objects 
will be assigned to the updated streams. Thus the auditory 
processor tracks the streams.

Cognitive strategy and response choice. The final output 
of perceptual processing,  represented in the cognitive 
processor's working memory, is a set of word objects and a 
set of stream objects.  Each word object will always be 
associated with a stream object,  but it may or may not have 
recognized content.  

Because the loudness and pitch of each word in the 
utterances varies within the same talker,  it is possible for 
individual words from two different talkers to be mis-
assigned to the streams, so that each stream is associated 
with a mixture of words from the two talkers.  Figure 2 
shows an example in which the Color words have been 
assigned to the wrong stream, while the Digit words were 
assigned to the correct stream. This will lead to a response 
with the Masker Color and the Target Digit.

The cognitive process for selecting a response makes use 
of the recognized content of the word objects together with 
the stream associated with each word object. For example, 
as in Figure 2, if the word object whose content is the Target 
Callsign Baron is associated with Stream2 and there are two 
word objects associated with the same stream whose content 
has been recognized as the Color Red and the Digit 8, then 
Red 8 will be used to specify the response to be made.

Some content might be unrecognized, but in many cases 
the model strategy can infer the missing information. For 
example, if only one of the Callsign contents was 
recognized, and it was a Masker Callsign, the model can 
infer that the unrecognized Callsign word object was the 
Target Callsign, and its assigned stream must be the Target 
stream, so the Color and Digit words associated with that 
same stream must be the Target Color and Digit. Thus the 
strategic component of the model tries to make use of partial 

information to perform the task. 
Theoretical summary. In terms of conventional attention 

theory, this is a "very late selection" model - all of the 
information produced by perception is available to cognition 
for choosing the response. 

The problems of trying to handle two simultaneous 
messages is not represented as a failure to select the correct 
stream prior to cognition, but rather that masking effects and 
errors in stream assignments will result in a collection of 
perceptual information about the messages that may be 
incomplete or incorrect (e.g. as in Figure 2), and the task 
strategy must make use of this information to choose a 
response that meets the task requirements.

Model Details and Parameters
Corpus statistics drive the model. We computed the 

average loudness and pitch over each segment in each 
utterance in the CRM corpus, and supplied this information 
for each word (segment) that was "heard" by EPIC’s 
auditory processor. An interesting result is that while female 
talkers had mean pitches about an octave higher than male 
talkers, individual talkers had somewhat different baseline 
pitches, which allows the stream tracking to often 
distinguish talkers within genders over the course of an 
utterance. Because this model was driven by the corpus 
properties, there are relatively few free parameters that 
affect its fit to data. 

For each trial, the simulated experiment samples two 
utterances and then supplies EPIC's auditory system with 
the content, loudness,  and pitch of each segment. The pitch 
was converted to semitones. Inside the auditory system 
module, pitch differences were always capped at 4 
semitones, a constant value based on Assmann & 
Summerfield (1990) and not estimated to fit the data.

Content detection parameters. The content detection 

Stream 1
124, 61

ready
t1, 120, 60

arrow
t2, 130, 62

Stream 2
102, 58

ready
t1, 100, 57

baron
t2, 96, 59

red
t5, 110, 60

green
t5, 124, 62

4
t6, 120, 60

8
t6, 100, 57

 
Figure 2. Example showing contents of working memory after 
erroneous stream tracking. The polygonal boxes top and bottom 
are the two stream objects, showing mean pitch (Hz) and  loudness 
level (dB) values. The ovals are the word objects in each message 
in  left-to-right time order (goto  and now omitted for clarity), 
showing  the content, time stamp, pitch, and loudness. During 
perception, each word was associated with  its closest  stream, but 
because the Color word pitches were discrepant, they were 
assigned to the wrong stream. 
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parameters are summarized in Table 1. The Effective SNR is 
the sum of the loudness SNR and the pitch difference in 
semitones weighted by a parameter w.

The content detection process is modeled along the lines 
suggested by Wichman & Hill (2001). With a low 
probability (the lapse rate α),  subjects will fail to recognize 
content (even at very high SNR); otherwise, the probability 
of content detection follows a gaussian detection function of 
Effective SNR, with parameters of mean µ and standard 
deviation σ. The parameters w, α and σ are assumed to be 
constant across the type of content word (Callsign,  Color, 
Digit), while µ is assumed to have a different value for each 
type of content word (Callsign, Color,  Digit).  For 
completeness, the content detection functions for the filler 
words ready, goto, and now, were specified, but for 
simplicity were made the same as the Callsign detection 
function because the content of the filler words plays no role 
in stream tracking or response strategy. 

Stream tracking details and parameters. The stream 
tracking parameters are also summarized in Table 1.  The 
stream perception model in the EPIC auditory processor 
uses an averaging minimum-distance stream tracking 
algorithm.  Each stream object accumulates the mean pitch 
(in semitones) and mean loudness (in dB) of the word 
segments that have already been assigned to that stream. 
The stream predicts that the pitch and loudness of the next, 
or new, word segment will be the same as the current means. 
The stream perception model then calculates the prediction 
error between each stream and each new word segment as 
the weighted cartesian distance between the (pitch, 
loudness) values,   where pitch differences are weighted by a 
parameter λ (0-1) and loudness differences are weighted by 
(1 - λ). The pitch difference was capped at 4 semitones. The 
new word segments are then assigned to streams so as to 
minimize the total distance between all words and their 
assigned streams.  The streams are then updated to include 
their newly assigned word segments, and the resulting 
means used to predict the segment that follows. 

The stream perception model included a noise component. 
After determining the minimum-distance assignment, the 
stream perception process compares the maximum and 
minimum total distance; if the difference is less than or 
equal to a threshold value θ, an assignment is chosen at 
random.

Cognitive processor strategy exploration. The auditory 
perception components in the EPIC architecture take the 
input utterance segments and perform content detection and 
stream tracking and provide the resulting content and 
StreamID attributes of the individual word segments, like 
that shown in Figure 2,  to the cognitive processor, which is 
running a strategy implemented in production rules.  Over 
the course of this work, a variety of strategies were 
considered, and two key options were identified. The first is 
that in the 2-channel task,  symmetrical inferences can be 
made; for example, if we know that one of the Color words 
is from the Masker stream, we can infer that the other Color 
word has to be from the Target stream.  

The second option concerns the "guessing" strategy. Note 
that in this forced-choice paradigm, the subject must 
respond even if they have not identified the Target Color or 

Digit.  The optimum strategy would seem to be to always 
avoid responding with known Masker content,  and choose 
some Neither Color or Digit instead. However, this Avoid-
Masker strategy failed badly to fit the data - it could not 
account for how there are so many Masker responses in 
conditions where the Masker stream should be easily 
identified, such as at extreme negative SNRs. We realized 
that subjects might adopt a "use what you heard" heuristic: 
If the Target callsign content was not actually detected, then 
there is some uncertainty about whether the two streams 
were correctly identified, so responding using content that 
was actually detected is better than a pure guess. Thus the 
Use-Maskers strategy will use content known to be from the 
Masker stream if Target content was not detected, but only 
if the identity of Target stream had been inferred from 
detection of Masker callsign content.  This model used both 
the symmetrical inferences and the Use-Masker options.

Strategy summary. During the processing of the utterance, 
if Callsign content is present (detected),  tag its StreamID as 
the Target or Masker stream accordingly. If not, infer the 
Target or Masker status from the other stream if its Callsign 
content is present. Then tag the Target or Masker status of 
each Color and Digit word, based on their assigned 
StreamIDs. Note that if neither Callsign is detected, it is still 
possible for Color and Digit words to be paired with their 
correct streams, but the model will not know which stream 
is the Target stream or the Masker stream. 

When it is time to choose a response, the following rules 
are used for both choosing the color response and choosing 
the digit response, depending on what content was detected 
and which stream it is associated with: If the Target stream 
is known or inferred, then use the content from the Target 
stream if it is available. But if the Target stream was only 
inferred and the Target content is not available, then use the 
Masker content if it is available.  Otherwise, use a color-
digit content pair from the same stream if available, or use 
separate color and digit content if it is available; otherwise, 
make a pure guess. 

Model Fitting and Results
The parameter values shown in Table 1 were determined 

by Monte-Carlo runs of the EPIC model with a grid search 
of the parameter values using high-performance clusters 
provided by AFRL through mindmodeling.org. The search 
goal was to maximize r2  between predicted and observed 
values for the Target and Masker Color and Digit 

Effective SNR pitch weight w 2.00

Callsign content detection µ -20.00

Color content detection µ -18.00

Digit content detection µ -26.00

Content detection σ 10.00

Content detection lapse rate α 0.04

Stream tracking pitch weight λ 0.80

Stream tracking distance threshold θ 0.10

Table 1. Best-fit parameter values
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probabilities (blue and red curves in Figure 1).  Each Monte-
Carlo run used 3000 trials per talker/SNR condition. There 
are a total of 240 empirical data points with at least 120 
degrees of freedom; eight parameter values were varied in 
the search. The best-fit values are shown in Table 1.

Figure 1 shows the predictions from the EPIC model as 
open points and dotted lines.  All three conditions are well 
handled with a small set of parameters that describe how the 
auditory perceptual process is affected by the acoustic 
properties of the input as provided by the corpus statistics 
based on the segmentation. It is especially noteworthy that 
unlike the model presented in Kieras et al. (2014), there are 
no parameters that are specific to talker similarity conditions 
- the pitch difference used in detection and tracking 
accounts for these effects.

As summary measures of goodness of fit, r2 = 0.99 
between predicted and observed values for the Target and 
Masker Color and Digit probabilities (blue and red curves), 
and r2 = 0.95 for the completely-correct probabilities 
(black). Only a few of the predicted values lie outside the 
confidence intervals in the data. 

However, there is a clear tendency for the completely-
correct points to be generally under-predicted, probably 
because our simple model of the stream tracking is not 
“sticky” enough. That is, a detailed look shows that subjects 
are more likely than the model to choose the Target Digit if 
they have chosen the Target Color, as opposed to switching 
to the Masker or Neither Digit.  The result is a tendency to 
under-predict the completely-correct responses, even though 
the individual Target and Masker responses are well 
predicted.

Conclusions
The EPIC auditory architecture has been extended to 

include explicit mechanisms for auditory stream perception 
and tracking. These mechanisms rely on acoustic properties 
of the speech input itself, in this case, the statistics of the 
corpus.  

We now have a successful model of the two-talker task in 
which stream tracking based on basic acoustic 
characteristics of speech accounts very well for data from 
the two-talker task. Further refinement of the model for the 
stream tracking process may improve the fit,  and there may 
be ways to reduce the number of free parameters in the 
detection functions.  Work in progress suggests that this 
model may also scale to three- and four-talker tasks; in fact, 
the model as described functions in the three- and four-
talker cases; the theoretical issue is how to correctly capture 
the substantially poorer performance produced by having 
multiple maskers. 

In addition,  the two-talker model can account for the 
original Brungart (2001) data if complex suboptimal 
mixture model strategies are implemented to represent the 
apparently under-constrained strategies adopted by the 
subjects.  This last result urges that better experimental 
control of subject strategies, as in our replication 
experiment, should be used in future experiments on this 
topic, and that modeling should attempt to explore 
alternative subject strategies systematically.
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