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Gaën Plancher (Gaen.Plancher@univ-lyon2.fr)
Univ. Lyon 2, EMC, 5 avenue Pierre Mendès-France, F-69676, Bron, France

Abstract

It is well known that working memory performance changes
with age. Two recent computational models of working mem-
ory, TBRS* and SOB-CS, corresponding to two distinct causes
of forgetting, namely time-based decay and interference, are
applied on a set of complex span data produced by young and
older adults. As expected, these models are unable to account
for the older adult data. An investigation on the effect of the
main parameters of these models showed that the poorer per-
formance of older adult does not come from a weaker encoding
of items, or even a longer time spent on distractors, but rather
on difficulties during the free time that immediately follows
each distractor, as well as a higher level of confusion between
items. These results are discussed with respect to the current
theories of working memory and aging.
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Introduction
Working memory is a cognitive construct that describes how
information can be maintained for a limited period of time,
while concurrent processing is also performed. Several com-
putational models of working memory have been proposed in
the last decades. Most of them concern young adults. How-
ever, it is known that working memory tends to decline with
age (Logie & Morris, 2004) for reasons that are not com-
pletely understood. Indeed, several explanations have been
proposed and the question is still under debate. This paper is
an attempt to contribute to the debate by means of a compu-
tational modeling approach.

To this end, we will test two recent theoretical models that
propose two distinct mechanisms to account for forgetting in
working memory: time-based decay and interference. De-
spite a strong opposition between these two models in the
recent literature, we will show that adapting each one to re-
produce older adult data leads to similar conclusions about
the reason of the older adult working memory loss of perfor-
mance.

The first model, named TBRS for Time-Based Resource
Sharing (Barrouillet, Portrat & Camos, 2011) claims that our
difficulty to maintain several items in memory while per-
forming distracting tasks in-between their presentation comes
from the fact that item activation decays with time as soon
as attention is directed towards another item or a distrac-
tor. Hence, according to TBRS, working memory perfor-
mance depends on the cognitive load of the processing task,
which is defined as the proportion of time during which this
task captures attention. This model is supported by several

experiments using a complex span design (e.g. Barrouil-
let, Bernardin, Portrat, Vergauwe, & Camos, 2007; Portrat,
Barrouillet, Camos, 2008; Vergauwe, Barrouillet, & Camos,
2010).

The second model, called SOB-CS for Serial Order in a
Box – Complex Span (Oberauer & Lewandowsky, 2012), has
a completely different point of view. It is based on the idea
that forgetting is not based on decay but rather on the effect of
interference between items or between items and distractors.
The interference from distractors depends on the strength of
their encoding and this strength relies on the novelty of the
to-be-processed items. This novelty varies with the number
of to-be-processed items and their similarity: the more the
number of items, the poorer the recall and the more similar
the items, the better the recall performance.

There has been a strong debate in the literature in the
past years between these two models (Plancher & Barrouil-
let, 2013; Lewandowsky, Geiger, Morrel, & Oberauer, 2010).
It is therefore useful to challenge both models by testing how
they would account for older people data, in particular be-
cause older people present reduce attentional capacities (Luo
& Craik, 2008) but are also more sensitive to interference
(Hasher, Zacks, & May, 1999). We therefore first present the
data that we collected on a complex span task on young and
older people.

Experiment
Procedure and Material

In a serial recall task, participants were presented with 5 im-
ages in-between which they had to read aloud 3 distractor
words. They were then asked to recall the image names in
order. Such a trial was repeated 16 times. In order to study
both a possible interference effect and a time effect which are
markers of SOB-CS and TBRS respectively, we defined two
variables:

- the novelty of distractors which either contain repetitions
(low interference, e.g., duck, duck, duck or duck, duck,
horse) or all distinct (high interference, e.g., duck, plane,
horse);

- the duration in-between distractors, which could be long
(slow pace, one word to read every 2 seconds) or short (fast
pace, one word to read every 1.2 seconds).
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There were therefore 4 experimental conditions resulting
from two types of novelty of the distractors (repeated vs.
novel words) and two paces of the processing task (fast vs.
slow), with then four trials in each condition. Repeated dis-
tractors are generally three identical words (AAA), but we
also used patterns in which only two are identical and the
third one different (called ABA, ABB or AAB), in order to
prevent participants from anticipating the distractor.

Participants
20 young participants (12 females; mean age = 21.62;
SD = 2.51) and 20 healthy older participants (13 females;
mean age = 71.92; SD = 5.18) voluntarily took part in this
experiment.

Results
As expected, the two populations behave differently. Older
participants recalled fewer images (2.80) than younger partic-
ipants (3.78), F(1,38)=27.77, p<.001. An interesting finding
is that older adults did not spend more time to process dis-
tractors (489 ms in average) compared to young adults (527
ms). Their worse recall performance therefore does not come
from a longer time spent on distractors.

We now present two sets of simulations performed on two
computational models that are able to simulate a working
memory trial, TBRS* and SOB-CS. Each model is exposed
to 5 items during 1500 ms each. In-between each presenta-
tion of items, three distractors are presented during a specific
duration that corresponds to the time actually spent by partic-
ipants for reading a distractor word. Models then simulates
the recall phase at the end of each trial. When asked to recall
an item at a given position, models could, exactly like par-
ticipants, recall the correct item, recall a wrong one or even
do not recall anything if none of them is activated enough in
memory.

TBRS*
Description
TBRS* (Oberauer & Lewandowsky, 2011) implements the
verbal theory (Barrouillet et al., 2011) which assumes that
the core component of working memory is attention. If at-
tention is directed towards an item, its activation value is
increased and the activation values of all other items is de-
creased. TBRS* is based on a two-layer connectionist net-
work. One layer is composed of nodes representing the items
to be memorized and the other layer encodes the sequential
position of items. Each position is coded by a subset of posi-
tion units, so that two adjacent positions share a proportion of
P units. Memorizing is modeled as a process of connecting
positions with items, by Hebbian learning (Anderson, 1995).
The strength of the increase of any connection weight (w)
depends on a strength value (η) and it is bound by an asymp-
tote L, defined in such a way that the total activation strength
of an item is always between 0 and 1: ∆w = (L− w)η.
The strength depends on the time t devoted to encoding as

well as a stochastic parameter r modeling human variability:
η = 1− e−r.t with r = N (R,s2).

For instance, if the sequence of letters to be memorized
is KZFP, K is first encoded which results in strengthening
the links between item K and the nodes coding for position
1. When attention is captured by another task, like reading
a word in our case, those values w decrease according to an
exponential function: w(t) = w0.e−D.t .

When attention is redirected towards the memory task, a
refreshing process takes place and leads to an increase of the
w values. All positions are successively considered, starting
with the first one, and the most activated item at each position
is retrieved and refreshed. In order to simulate retrieval errors,
a Gaussian random noise, defined by its standard deviation ,
is added to each item node before the best one is selected.

This refreshing process cycles until a new activity requires
attention.

To pursue our example, when Z is encoded, activation val-
ues between the node representing Z and the node represent-
ing position 2 are strengthened (while in the meantime, the
activation values of K are decreased). If there is time for re-
freshing, it is alternately done between the items retrieved at
position 1 (K if there is no retrieval error) and the one at po-
sition 2 (Z in most cases).

Comparison to experimental data
TBRS* was run1 5 000 times on each experimental condi-
tion (slow or fast pace repeated or unrepeated distractors)
for young and older adults, using the default parameters sug-
gested by Oberauer & Lewandowsky (2011). Since TBRS*
does not model interference between distractors, the experi-
ment was simulated by computing the durations of processing
distractors according to the different patterns of repetition di-
cussed previously: AAA, ABA, ABB, AAB and ABC. The
only difference between young and older adult simulations
comes from the variability of the time used by participants
to process a distractor, as mentioned previously. Results are
presented in Table 1.

As expected, it turned out that the model reproduces quite
well the young adult performance but it cannot account for
the older adult data.

Several TBRS* parameters could be tuned to better re-
produce the lowest performance of older adults, representing
thus possible causes of forgetting in WM. We investigated the
effects of the level of noise (σ) which controls the amount of
retrieval errors, the decay rate (D), the encoding strength (R)
and the duration for refreshing an item in the refreshing cy-
cle (Tr). We performed a grid search in this 4-dimensional
space and computed for each point the root mean square er-
ror (RMSE) between each model score under the 4 condi-
tions and the averaged experimental data. We then studied
the effect of each parameter by performing a projection on
the parameter dimension, and analyzing the evolution of the

1data and model codes that have been used in this work are avail-
able on the first author webpage
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Table 1: Mean number of items recalled in each condition, for
young and older adults (observed/Data and simulated/TBRS*
and SOB-CS). Both models used default parameters.

FAST PACE
Low Interference High Interference
Young Older Young Older

Data 3.51 2.55 3.69 2.88
TBRS* 3.51 3.52 4.33 4.32
SOB-CS 3.64 3.67 3.57 3.59

SLOW PACE
Low Interference High Interference
Young Older Young Older

Data 3.90 3.04 4.03 2.73
TBRS* 4.19 4.18 4.43 4.40
SOB-CS 3.98 3.99 3.97 3.99

average RMSE.
Figure 1 and 2 show the average RMSE as a function of

various values for the noise σ and he duration of atomic re-
freshing Tr, for both young and older adults.

Figure 1: RMSE between TBRS* simulation and data as a
function of the noise parameter σ.

It turned out that the models better fit the older adult data
for a higher level of noise (0.08) compared to the young adult
data for which the best RMSE is for a low level of noise,
coherent with the default value of 0.02 proposed by Oberauer
& Lewandowsky (2011) for young adults. The higher that
noise, the more likely retrieval errors. This could be the sign
of a weaker inhibition ability for the older population or a
higher sensitivity to interference.

The duration for refreshing a single item during free time,
in the refreshing loop, also needs to be adjusted to reproduce
the older adult data. That parameter was set to an average
value of 80 ms in the original model, which, for instance,
permits to make a full cycle of refreshing the five items in
about 400 ms.

The best RMSE for young adults is now obtained for a
value of 40ms, half the default value of the original model

Figure 2: RMSE between TBRS* simulation and data as a
function of the duration of atomic refreshing Tr.

but coherent with Portrat & Lemaire (in press) which showed
that this value has to be decreased if the model has an atten-
tional focus size of only one item at a time. As expected,
the best RMSE based on the older adult data is obtained for
a much higher value of about 200 ms for refreshing a single
item, which is 5 times the duration of the young adult model.

However, we could not find any difference between young
and older people concerning the rate of encoding strength,
nor a significant difference between decay rates.

To summarize, two parameters need to be adjusted to fit
older adult performance. First, the noise during retrieval for
refreshing or recall has to be increased. Second, the dura-
tion for refreshing a single item during the free time available
in-between processing steps has also to be substantially en-
larged.

One interesting finding of that simulation is therefore that
the older population would not suffer from a lack of encoding,
but rather from difficulties in taking advantage of the free time
that occurs after each distractor, either because of inhibition
difficulties or defaults in managing interference (parameter
σ) or because it takes time for them to refresh items (param-
eter Tr). We now present the second model that we used to
simulate our data .

SOB-CS
Description
SOB-CS (Oberauer & Lewandowsky, 2012) assumes that
working memory limitation is due to interference between to-
be-maintained items or between items and distractors. This
model is also based on a two-layer connectionist network that
associates a distributed item representation with distributed
position markers. Contrary to TBRS*, item representation is
distributed in order to reproduce interference between items,
distractors and both according to their similarity. For in-
stance, if items are highly similar they share patterns across
the same set of units, and inversely, different items are repre-
sented with very different patterns.

Memory is maintained by standard Hebbian learning (An-
derson, 1995): ∆W = ηe(i).W where W = vi pT

i represents
the weight matrix connecting the ith position markers pi with
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ith item representation vi and ηe(i) represents the encoding
strength which depends on the time spent to encode (te), the
rate of encoding R and the item’s novelty A(i) by means of
ηe(i) = A(i)(1− e−te.r). Item’s novelty reflects the degree of
mismatch between the expectation (computed as W.pi) and
the actual item. The higher the novelty, the stronger the en-
coding.

SOB-CS assumes that, during the processing step, distrac-
tors are encoded in the same way as items such as
∆W = ηe(i,k).di,k.pT

i where di,k represents the distractor k
following item i and ηe(i,k) is the encoding strength of the
distractor. That is the reason why a distractor following item
i creates interference on this item. Because of the item’s nov-
elty notion, repeatedly processing the same distractors pro-
duces less interference than does processing different distrac-
tors.

After each processing step, more or less free time is avail-
able which allows restoration of an unimpaired memory state.
The removal of the distractor has been modeled by Hebbian
antilearning : ∆W =−ηr(i,k).di,k.pT

i where ηr(i,k) is the an-
tilearning strength which depends on the free time t f , the rate
of removal r of representations from working memory and
the asymptotic value Ω(i,k).

Finally, for the recall step, the position markers are used as
cues to determine which items to recall. For instance, to re-
call the ith item, the vector position pi is considered to com-
pute v′i = W.pi, which is the distorded version of the origi-
nal vector vi. To retrieve this original item vi within all the
candidates item of the list, the model computes all the prob-
abilities of recalling an item j depending on the similarities
s(v′i,v j) = e−c.D(v′i,v j)

2
with c, the discriminability parameter

and D the euclidian distance between v′i and v j. Before each
recall item, a Gaussian noise with a standard deviation No is
added to represent output interference.

Comparison to experimental data
As previously described for the TBRS* simulation, we first
simulated the young and older adult data, with the default
parameters suggested by Oberauer & Lewandowsky (2012),
using also 5000 runs for each condition. As in TBRS*, the
difference between young and older adult simulation comes
from the variability of the time used by participants to pro-
cess a distractor. However, contrary to TBRS*, the fact that
distractors are repeated or not in the experiment is taken into
account by SOB-CS. Results are presented in Table 1. Like
TBRS*, SOB-CS reproduces more accurately the young adult
performance than the older adult one.

Hence, we studied the effect of four parameters proper to
this model to better fit the performance of older adult: the en-
coding rate (R), the removal rate (r), the standard deviation
(No) of the Gaussian noise added to each weight in W after
recall of each item and the discriminability (c) between re-
call candidates which controls the level of confusion between
retrieval candidates.

Figures 3, 4 and 5 show the average RMSE as a func-
tion of the various values for the removal rate (r), the dis-

criminability (c) between recall candidates and the standard
deviation No of Gaussian noise respectively for both young
and older adults. The model better fits the older adult data
for a lower discriminability (0.9) compared to young adult
data for which the optimal RMSE value appears to be much
higher, even higher than the default value (1.3) proposed by
Oberauer & Lewandowsky (2012). With lower values of c,
similarity falls off less steeply with distance, so that the most
similar candidate is less clearly discriminated from the less
similar ones. In accordance with a decline in inhibition with
aging (Hasher & Zacks, 1988 ; Hasher, Zacks, & May, 1999),
this lower discriminability for old people could explain more
intrusion errors that have been found in the recall of older par-
ticipants (e.g. Carretti, Cornoldi, De Beni, & Palladino, 2004
; Hedden, & Park, 2001).

Figure 3: RMSE between SOB-CS simulation and data as a
function of the removal rate strength r.

Figure 4: RMSE between SOB-CS simulation and data as a
function of the discriminability parameter c.

We also observed that the model simulating older adults
needs more time to remove the previous distractor during the
free time period than the one based on young adults. The
RMSE based on the older adult data is lower for a removal
rate (r) of 0.6 whereas the RMSE based on the young adult
data is lower for a higher removal rate (1.5 or more), coherent
with the default value proposed by Oberauer & Lewandowsky
(2012) for young adults. This result is also in line with the in-
hibition explanation of working memory aging (e.g., Hasher

133



Figure 5: RMSE between SOB-CS simulation and data as a
function of standard deviation No of the Gaussian noise.

& Zacks, 1988). Older participants would have difficulties to
suppress irrelevant information in WM.

The output noise parameter No in SOB-CS, which occurs
only in the recall step, has also to be modified for a good
simulation of the older people performance. Increasing the
noise is therefore a good way to simulate older people data.

Finally, as with TBRS*, we could not find any difference
between young and older people concerning the rate of en-
coding strength. An important finding of that second simula-
tion is that the conclusion is exactly the same as with TBRS*
simulation: older population would not suffer from a lack of
encoding, but rather from difficulties in taking advantage of
the free time that occurs after each distractor, either because
of inhibition difficulties or defaults in managing interference
(parameter c and No) or because it takes time for them to re-
move distractors (parameter r).

Discussion
The aim of the present paper is to give more understanding
of working memory aging through the comparison of behav-
ioral data collected on young and old adult with simulations
from two very recent and influential models of working mem-
ory. The first outcome is that they produced results that are
coherent with each other, in spite of their very different the-
oretical foundations. First, it appears that the strength with
which items are encoded does not have to be weaker for the
models simulating older adult performance. We could not
find any difference between young and older adults for the R
parameter in TBRS*. That is exactly the same for the encod-
ing parameter in SOB-CS. This finding tends to indicate that
the lower recall performance of older adults would not be due
to a lack of encoding the to-be-recalled items. However, the
difference between young and older adult performance can be
explained by two kinds of parameters, both controlling what
is happening during the free time following the processing of
each distractor or during recall. The first parameters control
the likelihood of confusion between items when retrieving
one at a given position whereas the second ones controls the
post-distractor processes. In addition, we computed the AIC
for both models using the probability mass functions of re-

calling x items, generated from a binomial model. We found
that the two original models do not differ much: on young
adult data, AICT BRS = 199.03 and AICSOB−CS = 196.02; on
older adult data, AICT BRS = 318.74 and AICSOB−CS = 310.57.

Defaults in the retrieval processes
In the TBRS* simulations, a much higher noise during re-
freshing and recall has to be set to account for the older adult
data. That Gaussian noise, which directly boosts confusion
between items, is added to the activation value of each candi-
date item, each time the model has to retrieve an item before
refreshing it or recalling it. The processes in charge of the re-
trieval of items given a position seems therefore to be affected
for the older adults.

A similar result was obtained from the SOB-CS simula-
tions. The parameter controlling discriminability between
items has to be decreased to account for the older adult data.
A low discriminability produced retrieval errors because the
best candidate can be mixed up with other candidates. This
parameter is highly similar to the noise parameter in TBRS*
because a higher noise added to the activation values of can-
didate items also introduces some confusion between items.

Defaults in the post-distractor processes
The other kind of parameters that has to be changed in the
simulations of older adult data concerns the processes that
appear right after processing a distractor. In the TBRS* sim-
ulations, to simulate older adults data, the model has to spend
5 times more time to refresh a single item than the default
value. It could be that older people needs more time to re-
fresh items but it could also be that they spend time to switch
from processing distractor to maintaining items.

This result is in line with what has to be modified in SOB-
CS, that is the parameter that controls the removal of the pre-
vious distractor, in order to reinstate the correct state of mem-
ory. Once again, this process occurs right after a distractor
has been presented. According to the results of both model
simulations, it is therefore right after the processing phase,
when participants have to switch from a distracting activity
to a process trying to maintain items vivid in memory, that
something goes amiss in older adults.

Theoretical explanations
There are several theories in the literature to explain the lower
working memory performance of older people. In this sec-
tion, we focus on three theories. One strong explanation
comes from a deficit of inhibition control (Hasher & Za-
cks, 1988; Hasher, Zacks, & May, 1999). Older partici-
pants would have difficulties to suppress irrelevant informa-
tion in WM and, in consequence, access to relevant informa-
tion would be reduced. Our simulations are coherent with that
explanation because the processes that have to be altered in
the computational models to account for older adult data are
precisely those at the frontier between processing a distractor
and taking advantage of the free time. And this moment is
when an inhibition process occurs.
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Another explanation that is proposed in the literature (Salt-
house, 1996) suggests that aging goes along with a slower
processing speed. The encoding phases of the two models do
not have to be modified to account for the data, but we can-
not conclude that older people spend as much time as young
people to encode items because of the experimental design:
duration presentation is probably too long (1.5s) to observe
differences of strength encoding at the end of the encoding
phases.

Finally, another hypothesis is linked to the deficit of
switching between storage and processing. According to Ver-
haeghen and colleagues (Vaughan, Basak, Hartman, & Ver-
haeghen, 2008), focus-switching might be a good candidate
for the locus of age differences in WM. In accordance, dif-
ficulties to remove distractors (SOB-CS) or to refresh items
(TBRS*) for older adults could be viewed as a symptom of a
longer switching mechanism between processing and storage
instead of a deficit of inhibition. Similarly, a higher rate of
confusion between items could be the sign of lower accuracy
of the process of switching items in and out of the focus of
attention (Verhaeghen & Basak, 2005).

TBRS* and SOB-CS are concurrent models simulating
working memory in different ways. The present study does
not aim at choosing the best of them. On the contrary, we take
advantage of both of them to investigate the possible causes
for the decline of working memory performance in aging. We
found that, in spite of theoretical divergences between these
two models, simulations tend to the same conclusions: older
people seems to have difficulties of taking advantage of the
free time and more confusion between items. It would there-
fore be interesting in the future to model more precisely that
specific moment where the default seems to occur, which is
the switching between processing and storage.
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