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Abstract 

In this paper, we show ACT-R agents capable of metacognitive 
reasoning about opponents in the repeated prisoner’s dilemma.  
Two types of metacognitive agent were developed and compared 
to a non-metacognitive agent and two fixed-strategy agents. The 
first type of metacognitive agent (opponent-perspective) takes the 
perspective of the opponent to anticipate the opponent’s future 
actions and respond accordingly.  The other metacognitive agent 
(modeler) predicts the opponent’s next move based on the previous 
moves of the agent and the opponent. The modeler agent achieves 
better individual outcomes than a non-metacognitive agent and is 
more successful at encouraging cooperation.  The opponent 
perspective agent, by contrast, fails to achieve these outcomes 
because it lacks important information about the opponent.  These 
simple agents provide insights regarding modeling of 
metacognition in more complex tasks. 

Keywords: Theory-of-mind; Metacognition; Prisoner’s 
Dilemma; ACT-R 

Metacognition in Two-Person Games 
Humans can reason about the minds of others and 

predict their behaviors, a metacognitive ability known as 
theory of mind (Premack & Woodruff, 1978).  A question of 
great current interest is why humans evolved this ability.  
One possible reason is that theory of mind allows people to 
understand and predict the actions of others (McCabe, et al., 
2000).  People can use this ability to determine whether 
another person is likely to be cooperative or competitive.  
Theory of mind might also be used to learn the strategy of 
an opponent and devise an appropriate counter-strategy 
(Hingston et al., 2007).   

The prisoner’s dilemma is a task that embodies the basic 
conflict between cooperation and competition often found in 
real-world interactions.  It is often used to study how 
various strategies may help or harm an individual’s or 
group’s chances of survival (Axelrod, 1980; Wedekind & 
Melinski, 1996; Nowak & Sigmund, 1993).  However, very 
little is known about how metacognition impacts 
performance in this task.  In the present work, we develop 
two cognitive agents that embody different metacognitive 
strategies.  We then compare the performance of these 
agents against an existing, non-metacognitive agent 
(Lebiere, Wallach, & West, 2000) and two normative 
strategies (tit-for-tat: Axelrod, 1980; win-stay-lose-shift: 
Wedekind & Melinski, 1996).   

 
 

The Prisoner’s Dilemma 
The prisoner’s dilemma is a 2 x 2 game in which players 

must choose to cooperate with their opponent (move B) or 
to defect (move A).  This results in one of four possible 
outcomes.  The following is a typical payoff matrix for the 
prisoner’s dilemma game. 

If both players consistently choose to cooperate, then they 
both will enjoy a positive payoff.  However, cooperation is 
risky, because both players have a temptation to defect.  If 
the opponent defects when a player cooperates, the 
cooperating player will lose a large number of points.  
Defection also carries risks.  When there is more than one 
round, opponents may retaliate by defecting in later rounds.  
The optimal strategy is not obvious and depends on the 
opponent.  Therefore, reasoning about an opponent’s goals 
and predicting their future behavior should provide an 
advantage (Hingston et al., 2007).  To determine if this is 
true, we developed two cognitive agents that represent 
different strategies for metacognitive reasoning. We then 
tested these agents against fixed strategies and a non-
metacognitive model. 

The ability to reason about others may have implications 
not only for individual outcomes, but also for collective 
outcomes.  De Weerd, Verbrugge, and Verheij (2013) 
developed agents with different levels of metacognitive 
ability and pitted them against one another in a negotiation 
game.  They found that agents that could reason about their 
opponents’ beliefs obtained both greater rewards for 
themselves and found opportunities for greater collective 
rewards.  In a similar way, metacognitive abilities may 
improve cooperation in the prisoner’s dilemma.  
Metacognitive agents may have an easier time predicting 
their opponents, allowing them to know when cooperation is 
possible. 

To evaluate the metacognitive agents presented here, we 
used a previous agent developed by Lebiere, Wallach, & 
West (2000) as a baseline.  This agent is built within the 
ACT-R cognitive architecture (Anderson et al., 2004).  The 
agent provides a good fit to human data, but it is not 
metacognitive because it bases its decisions only on the 
immediate payoffs of its previous moves.  It does not 
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Player 
1 

 Cooperate 
(B) 

Defect 
(A) 

Cooperate (B) 1,1 -10, 10 
Defect (A) 10, -10 -1, -1 
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attempt to learn its opponent’s strategy or explicitly reason 
about its opponent.  For this reason, we hereafter refer to it 
as the self-payoff agent. 

We present two types of metacognitive agent: opponent-
perspective and modeler.  The opponent-perspective agent is 
inspired by the simulation theory of mind (Gallese & 
Goldman, 1998; Meltzoff, 2007), which states that people 
reason about the mental states of another by adopting the 
other’s perspective.  On every trial, the agent computes the 
move that it would make if it was the opponent and then 
selects its own move accordingly.  

The modeler agent is inspired by opponent-modeling 
agents in the multi-agent systems literature (e.g. Hingston et 
al., 2007) as well as models of sequence learning in ACT-R 
(Lebiere & West, 1999). An opponent-modeler agent 
develops a mental model of the opponent’s strategy over 
time and attempts to predict the opponent’s next move 
probabilistically. Hingston et al. (2007) present an 
opponent-modeler that can successfully play the prisoner’s 
dilemma against a variety of other agents.  However, this 
agent is not a cognitive agent, and does not attempt to 
capture the flexibility or variability of human behavior. Our 
modeler agent extends this approach by using the 
declarative memory system of ACT-R to create a 
cognitively plausible, dynamic model of its opponent that 
can be rapidly updated to handle new information. This 
approach should be helpful for adapting to new opponents 
or strategy shifts in current opponents.   

Simulations 
In the following simulations, we use an instance-based 

learning approach to allow the agents to adapt to their 
opponents (Logan, 1988).  In this approach, the outcomes of 
previous trials are encoded as chunks in declarative 
memory.  The agents then attempt to predict outcomes or 
opponent behaviors by retrieving a chunk from memory that 
matches the current situation.  By updating the contents of 
declarative memory, the agents can adapt their strategies to 
suit their opponent.   

The likelihood of retrieval of a chunk in ACT-R is 
determined by its activation level.  The more frequently and 
recently a chunk has been used, the more active it will be.  
For all simulations, we used the full (non-optimized) 
learning equation of ACT-R: 

 

𝐵! = ln 𝑡!!!
!

!!!

+   𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0, 𝑠  

 
In this equation, n is the number of presentations of chunk 

i.  tj is the time since the jth presentation.  A presentation is 
either the creation of a chunk or a retrieval of that chunk.  d 
is the rate of activation decay.  By default this is set to 0.5.    
The rightmost term of the equation represents noise added to 
the activation level.  s is an ACT-R parameter that 
determines the standard deviation of the noise.  For all 
simulations reported here, we use an s value of 0.25, 

consistent with the value used in Lebiere, et al.’s (2000) 
model.  

In the following simulations, we compare the 
performance of the two metacognitive agents to the self-
payoff agent.  The aim was to determine whether 
metacognitive reasoning can give an agent more robust 
performance across a variety of agents.  To do this, we 
played all three of these agents against the self-payoff agent 
and two fixed-strategy agents.  We hypothesized that the 
metacognitive agents would have better overall performance 
across all opponents because of their greater adaptability. 

The strategies of the fixed-strategy agents were based on 
two normative strategies found in the prisoner’s dilemma 
literature: tit-for-tat (TFT; Axelrod, 1980) and win-stay-
lose-shift (WSLS) (Nowak & Sigmund, 1993).  Both of 
these strategies have been shown to provide robust 
performance against a variety of opponents. There are 
several variations of the tit-for-tat strategy, but all of the 
variations tend to copy the previous move of their opponent.  
We used a strict TFT strategy that always copied the 
previous move of the opponent.  The WSLS strategy, by 
contrast, continues to make the same move until it loses 
points, then it changes moves.   

The Self-Payoff Agent 
This agent is a replication of the model reported in 

Lebiere, et al. (2000).  It was originally designed to account 
for behavior in the prisoner’s dilemma task without 
resorting to notions of altruism or to long-term payoff 
calculations.  It does not attempt to explicitly reason about 
its opponent or predict its opponent’s behaviors.  Instead, it 
predicts the most likely payoff of each of its possible 
moves.  Then it selects the move associated with the highest 
payoff.   

The self-payoff agent remembers the previous rounds of 
the game using four declarative memory chunks.  Each 
chunk represents one of the four possible outcomes of the 
game. 

 
A1-A2 isa outcome move1 A move2 A payoff1 -1 payoff2 -1 
A1-B2 isa outcome move1 A move2 B payoff1 10 payoff2 -10 
B1-A2 isa outcome move1 B move2 A payoff1 -10 payoff2 10 
B1-B2 isa outcome move1 B move2 B payoff1 1 payoff2 1 

 
The four outcomes are A1A2, A1B2, B1A2, and B1B2.  

The first letter of the pair represents player 1’s move and the 
second letter represents player 2’s move.  The move1 and 
move2 slots represent the moves chosen by players 1 and 2 
respectively.  The payoff slots contain the number of points 
both players receive.  In every round, the model creates a 
new outcome chunk in the goal buffer.  When the model 
selects its move, it records it in the move1 slot.  At the end 
of the trial, the opponent’s move and the resulting payoffs 
are also recorded in this chunk.  

The self-payoff model uses the relative activation levels 
of these four chunks to determine the most likely outcome 
of a given move.  It does this by using a set of four 
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production rules.  The first two productions retrieve two 
outcome chunks, one in which move1 is A and one in which 
move1 is B.  The remaining productions then select move A 
if payoff A is higher or move B is payoff B is higher. 

The self-payoff agent provides a good fit to human data 
both in the prisoner’s dilemma and in other 2 x 2 games 
(Lebiere et al., 2000).  It can account for cooperative 
behavior because the A1-A2 and B1-B2 chunks should 
become more active over time (as long as the opponent is 
not a consistent defector).  When these chunks are more  
active than the other two chunks, the agent determines that 
cooperation is more profitable than defection.   

The Opponent-Perspective Agent 
The opponent-perspective agent is an adaptation of the 

Lebiere et al. (2000) model that attempts to predict the 
opponent’s move by deciding which move it would take in 
the opponent’s place.  The opponent-perspective agent 
stores the same information in memory as the self-payoff 
agents. But instead of determining its own most likely 
outcomes, it predicts the most likely outcomes for its 
opponent.  It then predicts that its opponent will select the 
move with the highest payoff.  Based on this prediction, it 
selects an appropriate response.   

Due to the nature of the prisoner’s dilemma, there is not 
an optimal countermove for each possible opponent move.  
Regardless of an opponent’s move, defecting will always 
lead to a higher immediate payoff than cooperating.  
Therefore, we designed these agents to use an imitative 
strategy.  That is, the agent will do what it thinks the 
opponent is going to do this round.  If the opponent’s 
behavior can be successfully predicted, then the agent will 
be able to find opportunities for cooperation without being 
exploited. 

The perspective model uses the same declarative chunks 
and production rules described above.  However, its 
production rules instead compare the opponent’s payoffs 
rather than its own payoffs.  Based on this comparison, the 
model will predict the opponent’s next move and select the 
same one.   

In principle, this agent should be able to perform well 
against the self-payoff agent and the normative strategies.  
The metacognitive agent uses the same payoff calculation as 
the self-payoff agent, and this should make it easier to 
predict the self-payoff agent’s moves.  The TFT and WSLS 
agents calculate their moves differently, but they are all 
based on the same principle of cautious cooperation.  When 
the opponent cooperates and punishes defection, these 
agents will tend to cooperate more.   

The Modeler Agent 
The modeler agent represents a different form of 

metacognition than the opponent-perspective agents.  The 
modeler attempts to build a mental model in declarative 
memory to predict the opponent’s most likely next move 
based upon their previous moves.  Unlike Hingston et al.’s 

(2007) opponent-modeler, the modeler makes a specific 
prediction about the move the opponent is going to make in 
the current round. Also, because it makes use of ACT-R’s 
declarative memory system, the modeler weighs information 
from more recent rounds more heavily than less recent 
rounds.  This should afford the agent greater flexibility in its 
behavior.   

Unlike the opponent-perspective agent, the modeler does 
not make any assumptions about the specific strategy used 
by the opponent.  Instead, it tracks how the opponent 
responds to each of the four possible outcomes in the game 
(double-defect, defect-cooperate, cooperate-defect, and 
double-cooperate).  It then predicts that the opponent will 
make the same move after the outcome appears again.   

The memory structure of the modeler agent is different 
from that of the self-payoff and opponent-perspective 
agents.  The model does not start with any predefined 
chunks, but after every trial, it will create a new chunk like 
the following example: 
 
SEQUENCE0 isa sequence move1 A move2 B next-move A 
 

Move1 represents the player’s move and move2 
represents the opponent’s move.  Next-move represents the 
opponent’s move on the following round.  This chunk 
represents an instance in which the agent defected and the 
opponent cooperated; in the next round, the opponent 
responded with a defection.   

Before deciding on a move, the modeler agent will 
retrieve a previous instance that matches the current 
situation.  For example, after a double-cooperation round, 
the modeler will attempt to retrieve a chunk in which both 
move1 and move2 are B.  Based on this retrieved chunk, it 
will predict the opponent’s next move.  Like the opponent-
perspective agent, the modeler will select the same move 
that it thinks its opponent is going to select.  If this 
prediction turns out to be incorrect, the modeler will create a 
new chunk to reflect the correct prediction and store it in 
memory.  If the modeler fails to retrieve a similar instance, 
it will select a move randomly. 

Simulation Results 
Fifteen simulations were run.  The self-payoff, opponent-

perspective, and modeler agents were all played against all 
other agents.  Each simulation consisted of 1000 runs of 100 
trials.  Results were averaged over the runs.  A summary of 
the performance can be found in Tables 1 and 2. 

Self-payoff 
The self-payoff agent behaved consistently with the 

version previously reported (Lebiere et al., 2000).  When the 
self-payoff agent plays against itself, some runs are strongly 
cooperative (A1A2 = 4%; B1B2 = 92%) and in others there 
is no cooperation at all (A1A2 = 96%; B1B2 = 0%).  
However, when all of the runs were averaged together, the  
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self-payoff agent demonstrated an overall tendency to 

play aggressively.  Overall, the self-payoff agent defected 
on 73% of the trials.  Given the design of the agent, it may 
seem peculiar that it has such a strong tendency to defect.  
Reinforcing the A1A2 chunk should make the cooperate  
move more appealing (because cooperating may yield +1 
rather than -1).  The answer to this puzzle may lie in the 
agent’s prediction process.  Each time the agent retrieves an 
outcome, that outcome is reinforced in declarative memory, 
even if it never occurs.  In other words, the expectations of 
the agent are self-reinforcing.  If the agent frequently 
retrieves the B1A2 chunk by chance, the B1B2 chunk may 
never have a chance to become sufficiently active. 
Moreover, cooperation is fragile because two conditions 
must be met for the model to select cooperate. The model 
must believe that defection will be punished (A1A2 > 
A1B2) and that cooperation will not be exploited (B1B2 > 
B1A2).  If the opponent cooperates too frequently, then the 
agent will attempt to exploit it.  If the opponent defects 
when the agent tries to cooperate, it will quickly retaliate.   

Against TFT, the self-payoff agent earned a low negative 
individual score and combined score.  The TFT agent 
swiftly and consistently punishes defection, but it will only 
cooperate again after its opponent has cooperated.  This 
results in a loss for the self-payoff agent, making it less 
likely to cooperate in the future.   

The self-payoff agent earned a very high score against 
WSLS, but it did so by exploiting WSLS’s cooperation.  
The average score of the WSLS agent was very low.  This is 
probably due to the self-payoff agent’s strong tendency to 
defect.  When the opponent defects, the WSLS agent loses 
points and therefore switches strategies.  As a result, the 
WSLS agent essentially became a random decision agent 
because it lost points regardless of its move.  This constant 
switching made the WSLS agent extremely vulnerable to 
exploitation.   

Opponent-Perspective 
The opponent-perspective agent performed the worst of 

the three agents.  In terms of individual outcomes, it earned 
the lowest score against the self-payoff and modeler agents.  
It performed the best against the WSLS agent, but only  

 
because it tended to exploit the WSLS agent’s cooperation.   

The self-payoff agent heavily exploited the opponent-
perspective agent, often defecting when the opponent-
perspective agent cooperated (B1A2 = 12%).  This 
happened mostly on runs in which the self-payoff agent 
very rarely cooperated.  On these runs, the opponent-
perspective agent’s A1A2 chunk and A1B2 chunk were 
both highly active (because both outcomes are very 
frequent).  The B1A2 and B1B2 chunks, on the other hand, 
only receive activation from the internal predictions of the 
model. This sometimes causes the B1B2 chunk to become 
highly active, leading the agent to predict cooperation. To 
make matters worse, when the opponent-perspective model 
chose to cooperate, it reinforced the A1B2 chunk of the self-
payoff agent, reinforcing its tendency to defect.  As a result, 
the rate of mutual cooperation was quite low. 

 Against the TFT agent, the performance of the opponent-
perspective agent was very similar to the self-payoff agent.  
It showed a slight tendency to exploit the TFT agent (A1B2 
= 5%).  And, like the self-payoff agent, the rate of mutual 
cooperation was low.  The reason why the opponent-
perspective agent is not exploited by the TFT agent is 
because the TFT agent will always answer a cooperation 
with a cooperation.  So when the TFT agent does 
unilaterally defect, the opponent-perspective agent has the 
opportunity to do the same next round.   

Like the self-payoff agent, the opponent-perspective agent 
had a strong tendency to exploit the WSLS agent.  The two 
most common outcomes were mutual defection (A1A2 = 
38%) and unilateral defection by the opponent-perspective 
agent (A1B2 = 38%).  The high activation of the A1B2 
chunk caused the opponent-perspective agent to predict that 
the WSLS agent would never cooperate because it lost 
points so frequently as a result of doing so.    

Modeler 
The modeler agent, by contrast, did succeed in both 

achieving more favorable outcomes for itself and learning to 
cooperate with other agents when possible.  The modeler 
obtained higher scores than both other agents against the 
self-payoff and the TFT agents.  It also demonstrated a high 
positive score against the WSLS agent without exploiting it. 

Agent 1 

Agent 2 

Self-payoff Opponent – 
perspective Modeler TFT WSLS 

Self-payoff -56 (±7) 27 (±13) -19 (±6) -58 (±3) 250 (±7) 
Opponent-perspective  -147 (±11) -37 (±22) -67 (±4) -56 (±3) 335 (±11)  

Modeler -46 (±4) -61(±4) -1 (±5) 9 (±6) 103 (±1) 

Agent 1 
Agent 2 

Self-payoff Opponent-perspective Modeler TFT WSLS 
Self-payoff 13 (±1) 10 (±1) 29 (±2) 11 (±2) 53 (±2) 
Opponent-perspective - 7 (±1) 13 (±2) 13 (±2) 19 (±2) 
Modeler - - 45 (±2) 51 (±3) 97 (±.1) 

Table 1. Individual Scores of Agent 1 (95% confidence intervals in parentheses) 

Table 2: Percentage of Joint Cooperation Trials  (B1B2) (95% confidence intervals in parentheses) 
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The modeler agent does not achieve perfect prediction 
against the self-payoff agent.  In fact, when the modeler 
plays against the self-payoff agent, the self-payoff agent 
achieves a higher score.  However, the modeler is more 
successful at encouraging the self-payoff agent to cooperate.  
This improves the collective score and explains why the 
modeler scores more points when it plays against the self-
payoff agent than the self-payoff agent does when it plays 
against itself.  In addition, the modeler agent is able to 
predict the self-payoff agent well enough that it can avoid 
the heavy exploitation suffered by the opponent-perspective 
agent. 

 The modeler agent achieves the highest rates of 
cooperation of all three agents, demonstrating that the agent 
can quickly learn when cooperation with an opponent is 
possible.  By a large margin, the modeler agent obtains the 
most mutually cooperative trials.  There is room for 
improvement, however.  The joint score of the modeler 
against the TFT agent is far from the ideal 200 points.  This 
is because early defection from the TFT agent can lead the 
modeler agent to expect defection and respond in kind.  This 
is not so with the WSLS agent, which changes to 
cooperation after a mutual defection. 

Discussion 
The fundamental problem for the player in the prisoner’s 

dilemma is knowing when the opponent can be trusted.  Our 
simulations suggest that metacognitive reasoning, if done 
appropriately, can help to solve this problem. Only one of 
the metacognitive agents we tested demonstrated an 
advantage over a non-metacognitive agent. The modeler 
agent was successful both in increasing its own individual 
gains and in discovering opportunities for cooperation with 
opponents. The opponent-perspective agent, however, was 
not able to achieve better outcomes for itself or find 
opportunities for cooperation. 

Overall, the modeler agent is the best of the metacognitive 
agents because of its ability to flexibly adapt to different 
opponents.  Against cooperative agents, it will quickly learn 
to cooperate and achieve positive scores.  Against 
aggressive agents, it will learn to play defensively and 
defect most of the time.  In addition, he modeler agent 
demonstrates one example of how metacognition may work 
to improve collective outcomes as well as individual 
outcomes.  In interactions like those in the prisoner’s 
dilemma, uncertainty can be a major obstacle to 
cooperation.  Metacognitive reasoning may help to make 
other agents more predictable.  When agents can be 
confident that their partners will cooperate, they may be 
more willing to cooperate themselves. 

However, the modeler agent has several important 
limitations.  One current limitation of the modeler agent is 
that it represents a very simple theory of mind because it 
does not represent the opponent’s declarative knowledge or 
beliefs.  These were not necessary for the present purposes 
because of the simplicity of the task, but modeler agents in 
more complex tasks will likely require such representations.  

An additional limitation is that it does not consider the 
relative payoffs of its choices.  Rather, it imitates the 
opponent.  This makes sense in the prisoner’s dilemma, 
where unilateral choices (AB and BA) are generally avoided 
by agents because of severe costs.  But it may not extend 
well to other tasks.  This limitation could be addressed by 
making the model make three predictions: (1) the 
opponent’s move on the current trial and (2) the opponent’s 
response to each of the agent’s possible moves. The model 
could then select the move that will lead to the highest 
immediate and future payoffs.  The same declarative chunks 
used by the model to predict the opponent’s current move 
could also be used to predict how the opponent will respond 
to the agent’s current move.  

The present simulations, together with those of Kennedy 
and Krueger (2013), highlight important challenges in 
modeling theory of mind.  A “like me” agent (Meltzoff, 
2007) may fail if the agent has access only to one strategy or 
a small number of strategies.  This prevents the agent from 
considering that the opponent may be approaching the task 
in a different way.  Kennedy and Krueger used a “like me” 
approach to develop a theory-of-mind agent that could play 
a voluntary trust game.  This agent computed that it could 
achieve the highest average score by defecting.  Believing 
that the opponent would reach the same conclusion, the 
agent always defected.  Our opponent-perspective model 
shares a similar weakness. Because the short-term payoffs 
are skewed in favor of defection, both agents predict that 
their opponents will have a strong tendency to defect.  In 
our simulations, this prevented the opponent-perspective 
agent from predicting the behavior of the more cooperative 
agents (TFT and WSLS). These results do not mean that 
taking the opponent’s perspective is not helpful.  But it may 
be necessary for agents to have access to a larger set of 
strategies so that they can find one that resembles the 
opponent’s behavior. For example, if a model had two 
strategies (e.g. one cooperative and one aggressive), it could 
make predictions for the opponent’s behavior based on both 
strategies. It could then select its own strategy based on 
which one was a better fit to the opponent’s behavior.   

A further challenge in constructing “like me” agents for 
2-person games is tracking stochasticity in an opponent’s 
behavior.  Human performance in many of these games 
contains varying degrees of noise (Lebiere & West, 1999). 
Even if an agent has access to the same memory structure 
and decision rules as an opponent, that agent may still have 
difficulty tracking moment-to-moment variations.  The 
opponent-perspective agent had a difficult time predicting 
the behavior of the self-payoff agent because it did not have 
access to its trial-by-trial predictions.  On some runs, the 
self-payoff model’s B1A2 chunk became active very early 
on by a series of chance retrievals, making it very unlikely 
to cooperate.  However, the opponent perspective model did 
not know this, and still predicted that the self-payoff model 
would cooperate. 

Opponent modeling, as opposed to the “like me,” 
approach, is a more flexible strategy for a theory of mind 
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agent.  Such agents are not limited by their own repertoire 
of strategies, and can successfully predict a wider range of 
opponents.  In some cases, this approach may also be more 
cognitively efficient because it does not require mentally 
simulating the opponent’s decision process.  These agents 
may be especially powerful in situations in which opponents 
can change strategy without warning.  If the agent has an 
adaptive declarative memory system, it could quickly 
update its mental model of the opponent and counteract the 
new strategy.   

However, opponent modeling is not without drawbacks.  
It may be harder to implement such a strategy in more 
complex tasks.  In the prisoner’s dilemma, there are only 
two possible behaviors and an opponent’s behavior is 
completely visible.  When a greater number of behaviors is 
possible, it may be more difficult for an agent to determine 
which opponent behaviors are relevant.  

These simulations do not address how well the model 
behavior replicates human behavior, nor does it show how 
the models would perform against humans.  Playing against 
humans would provide a much stronger test for the modeler 
agent, as humans are likely to employ a variety of strategies 
and change strategies as the game progresses. We are 
currently planning an experiment in which we will collect 
this data.  Of particular interest here is whether the modeler 
will be as successful in encouraging humans to cooperate as 
it is with the TFT and WSLS agents.   

The work shown here demonstrates that metacognitive 
reasoning about an opponent can improve outcomes both for 
oneself and for one’s opponent in the prisoner’s dilemma.  
By learning an opponent’s strategy, an agent can determine 
if it is safe to cooperate, or if it is better to defect.  This 
increases the probability that the agent and its partner will 
discover a stable, mutually beneficial outcome.  
Metacognition also helps an agent detect and defend itself 
against cheaters.  However, players should beware to avoid 
assuming that all opponents will play the game the same 
way they do.  We expect that these benefits extend not only 
to other simple games but also to more complex scenarios.  
It remains for further work to discover how metacognitive 
reasoning can be best employed to achieve success in these 
other tasks.  

Metacognitive reasoning about an opponent’s behavior 
can provide an advantage in the repeated prisoner’s 
dilemma.  The ability to predict an opponent’s next move 
helps to determine when it is safe to cooperate and when 
one should defect.  This suggests that performance even in 
simple games may benefit from developing a theory of mind 
about one’s opponent.  
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