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Abstract
We propose a computational architecture of human joint ac-
tion that accounts for interactions between higher- and lower-
level coordination processes. A proof-of-concept implemen-
tation of the architecture is used to model the social Simon
task, a well known experimental task that reveals an interplay
between higher- and lower-level processes. We show that our
model is able to generate results aligned with human perfor-
mance data for four task configurations. This work contributes
to an understanding of mechanisms involved in joint actions.
Keywords: Joint Action; Computational Cognitive Model.

Introduction
Coordination during joint actions typically requires collabo-
rative planning as well as fine-grained alignment of move-
ments. Two musicians performing together have to agree on
the pieces they are going to perform and on the parts each
of them is going to play. During their performance, however,
they synchronize their movements to a level of detail that goes
well beyond the specification of this overall plan.

Philosophers have long analyzed higher-level collaborative
planning processes based on propositional attitudes such as
(joint) intentions, plans, goals, and beliefs (e.g. Bratman,
1992; Tuomela, 2000).

Notions of shared intention have also underpinned inves-
tigations by psychologists (e.g. Pacherie, 2011), though em-
pirical psychological research has put much emphasis on the
role of lower-level mechanisms of coordination in joint ac-
tion such as direct perception-action links (e.g. Wolpert et
al., 2003; Haazebroek et al., 2011) and it has been noted that
integrative perspectives in psychology that represent the inter-
play between higher- and lower-level coordination processes
are less well studied (Knoblich et al., 2011). Psychological
studies suggest that coactors develop shared task represen-
tations, i.e. they tend to represent their partners’ part of the
joint action even if this is not required for successful perfor-
mance (Sebanz et al., 2005), but there remains debate about
the nature and detail of what is shared (Knoblich et al., 2011).

Complementing these philosophical and psychological
perspectives, a large body of computational work formalizes
models of joint action and collaborative planning, (e.g. Grosz
& Kraus, 1996; Rao & Georgeff, 1995; Tambe, 1997) as well
as models of lower-level coordination processes, (e.g. Hur-
ley, 2008; Wolpert et al., 2003). Although these latter models

often seek to explain the emergence of higher-level coordi-
nation from lower-level processes, they are not as powerful
in representing collaborative plans as are the former models
based on higher-level propositional attitudes.

Computational approaches to cognitive modelling can play
many roles as discussed by Sun (2009). In particular, compu-
tational cognitive models of joint action can inform applied
research on human-robot interaction (e.g. Haazebroek et al.,
2011; Vesper, 2013, p. 146), a motivation we share.

Multilayer computational cognitive models have been
studied for some time (see Thagard, 2012), and examples are
mentioned in related work below. We build on such work
to pose a specific set of building blocks that can account for
observed phenomena in joint action. We describe a computa-
tional architecture that includes interactions between collab-
orative planning based on propositional attitudes and lower-
level coordination processes. In gathering evidence in sup-
port of the proposed architecture, we draw on theoretical and
empirical work on human joint action. We provide a proof-
of-concept implementation and simulate a particular experi-
mental task—the Simon task (Simon & Rudell, 1967)—that,
together with its social variant (Sebanz et al., 2005), has re-
vealed interactions between higher-level planning and lower-
level coordination processes. We demonstrate that our model
can account for empirical results obtained from different con-
ditions of the Simon task.

Next we describe our architecture. We then describe its
(partial) implementation as a model for the social Simon
task, present our analysis and a short comparison with related
work, and briefly conclude the paper.

Architecture
Figure 1 shows an overview of our architecture, which is
composed of two levels. At the lower perception-action
level perceptual input is received from the environment and
mental action representations are translated into muscular
movements. Shared representations for perception and action
based on common coding theory (Prinz, 1997) support the en-
gagement in joint actions. At the upper intentional level prac-
tical reasoning operates on higher-level mental attitudes. The
distinction between these levels is not crisp and only adopted
to guide the discussion and not to make strict distinctions.
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Figure 1: The levels of the architecture. Rectangles denote repre-
sentations, rectangles with rounded corners denote processes. Solid
lines show the feedback loop at the perception-action level. Dashed
lines represent information flow.

Two Memory Systems
We employ a dual-process model of a fast, automatic, and
subconscious mode of processing and a slow, controlled, and
conscious mode of processing. Following common practice
(Smith & DeCoster, 2000), we assume that the first mode
of processing operates on a sub-symbolic memory and the
second mode of processing operates on a symbolic memory.
Symbolic memory and its processing mode enable the pro-
cesses of the intentional level. Sub-symbolic memory and
its processing mode enable the processes of the perception-
action level. Via interactions between these two memories,
intentional and perception-action level and thereby higher-
level and lower-level coordination processes interact.

Building on connectionist models (e.g. Rumelhart, Mc-
Clelland, & PDP Research Group, 1986), sub-symbolic mem-
ory is composed of so called features, each of which has a cer-
tain activation level at any point in time. Activation spreads
between features via inhibitory and excitatory connections.
Hence, this memory encodes associations between features,
and processing exercises these associations by propagating
activation. The current activation pattern constitutes a kind of
working memory. Learning adjusts connections between fea-
tures based on how often they are activated simultaneously.

Symbolic memory consists of representations in a language
that allows for symbolic reasoning. Processing on this mem-
ory amounts to logical inference.

Symbols in symbolic memory are represented by sets of
features in sub-symbolic memory. Activating a set of features
representing a symbol affects the truth value of that symbol
in symbolic memory. However, only those symbols whose
features are sufficiently activated are available for reasoning.
This constitutes another kind of working memory and allows
perceptual context, which is encoded by activated features,
to influence which information is accessible for higher-level
reasoning. Inferring a formula by symbolic reasoning causes
corresponding features in sub-symbolic memory to be acti-
vated, which can lead to further activation of features. Map-
pings between symbols and features are subject to learning.

Actions

An action is represented by a motor command that produces a
movement and by its expected perceptual action effects. Both
motor commands and action effects are represented by feature
sets in sub-symbolic memory. In symbolic memory, these
feature sets are represented by symbols. This enables ac-
tion representations to be shared between the intentional and
perception-action levels. In sub-symbolic memory, different
action representations can have overlapping features. Like-
wise, representations of action effects and perceptual input
can have overlapping features, as postulated by Prinz (1997).
Because the features of the motor command and of its ef-
fects are activated at the same time frequently, there is a bi-
directional association between motor command and effects
in sub-symbolic memory. Consequently, an activation of fea-
tures associated with the effects of an action also activates
the associated motor command and vice versa. This allows
for a translation between action effects and motor commands
and the planning of actions in terms of their effects. Further-
more, the same action representation can be activated multi-
ple times, yielding an increased activation level; and multiple
action representations can be activated at the same time.

Perception-Action Level

We adopt a control system perspective to perception and ac-
tion for the perception-action level (Hurley, 2008; Wolpert et
al., 2003). Two types of internal models are distinguished: In-
verse models determine the motor command required to cause
particular effects. Forward models predict the effects of mo-
tor commands. Inverse and forward models are implemented
by associations between features in sub-symbolic memory.

An appropriate composition of inverse and forward models
enables the actor to deal with basic motor control without the
involvement of any higher-level cognition. We consider the
set-up depicted in Figure 2. We assume that input received
from the environment causes an activation of features in sub-
symbolic memory.

The inverse model translates effects into a motor command
given the current input, which specifies the preconditions that
the motor command has to satisfy. In basic execution mode,
the effects correspond to a goal state that the control system is
to achieve (point 2 in Figure 2). The execution of the activated
motor command acts on the environment, in turn affecting the
input to the inverse model. An internal forward model esti-
mates the effects of the current motor command, supporting
the inverse model in its control task. When the inverse model
fails to control for the error between the input and goal state,
control returns to the intentional level to correct for that error.

The inverse model can be used to generate motor com-
mands (3) for different goal states (2). The forward model
can then be used to make predictions for the effects (1) of
these motor commands (4). This prediction can also be ap-
plied to another actor’s actions. In line with common coding
theory (Prinz, 1997), we assume that the observed effects of
others’ movements activate corresponding action effect fea-
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Figure 2: Control and information flow at the perception-action
level. Rectangles depict representations, rectangles with rounded
corners depict processes. Solid lines represent control flow and
dashed lines show the points at which information exchange with
the intentional level happens.

tures, causing the respective motor command to be activated
via the inverse model. When the extracted motor command
(3) is used as an input to the forward model (4), action sim-
ulation is obtained, which allows to predict the other actor’s
movement (1) and infer their intentions at a basic level. Given
sufficient activation, copying of the other actor’s movements
results, which facilitates synchronization and imitation. A
side-effect is that any input can lead to the activation of action
effect features. This represents the interference of observed
and planned actions postulated by common coding theory.

Intentional Level
The intentional level implements practical reasoning based
on higher-level mental attitudes such as beliefs, goals, and
intentions and builds on the perception-action level.

Practical reasoning employs means-end reasoning and in-
tention inference (using symbolic reasoning and action sim-
ulation). Practical reasoning determines the construction of
joint intentions and enables, for example, social factors to
modulate whether shared task representation are constructed.
A joint intention is a mental attitude that links the coactors’
intentions and practical reasoning to each other’s actions and
to the overall joint action. Joint intentions drive collabora-
tive planning towards the goal of the joint action (Bratman,
1992). Action representations consist of effects (end) and
motor commands (means) as described previously. Goals and
intentions are arranged in a hierarchy of alternating levels. A
goal corresponding to action effects and an associated inten-
tion referring to an action that corresponds to a motor com-
mand form the lowest level of this structure. This represents
the integration of the perception-action and intentional lev-
els. At higher levels of the hierarchy intentions refer to action
plans instead of primitive motor commands.

Goals, intentions, and beliefs are attributed to particular
actors, which contrasts with feature activations. If we assume
that joint intentions follow the same structure as individual

(a) Stimulus-response
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incompatibility

Figure 3: Stimulus-response compatibility and incompatibility in
the Simon task. In (a), the stimulus appears on the side of the button
that is to be pushed. In (b), the stimulus appears on the other side.
Note that buttons are not colored in the actual task.

intentions (hierarchies of goals and plans), they integrate well
with the practical reasoning of individual actors.

The Simon Task
In the individual Simon task a subject pushes one of two but-
tons (left or right) depending on a non-spatial attribute of a
stimulus object appearing on a screen. The non-spatial, task-
relevant stimulus attribute is typically the color of this object.
For example, a subject could be instructed to push the left
button when the object is green and the right button when the
object is red. It turns out that reaction time increases if spa-
tial, task-irrelevant attributes of the object are incompatible
with spatial features of the expected response (push left or
right button). The spatial, task-irrelevant attribute is typically
the location of the object on the screen. For example, the ob-
ject can appear on the left or right side of the screen and be
either on the same side as the button that is to be pushed or
on the other. In the first case, we talk about stimulus-response
compatibility and about stimulus-response incompatibility in
the second case (Figure 3). The increase in reaction time in
the stimulus-response incompatibility condition is called the
Simon effect (Simon & Rudell, 1967). The Simon effect is
absent when the subject performs only one part of the task.

In the social Simon task, two subjects carry out the Si-
mon task together, i.e. each subject is responsible for one
of the two stimulus-response mappings (task rules). A task-
irrelevant spatial attribute referring to the other subject’s ac-
tion leads to an increase in reaction time similar to the one
in the individual Simon task (Sebanz et al., 2005). Such an
increase in reaction time does not occur if the subjects carry
out their parts of the task individually. This suggests that sub-
jects corepresent their coactor’s action in the joint task (action
corepresentation). The representation of the coactor’s action
can be activated by a compatible stimulus feature, causing an
action conflict (i.e. a situation where the inappropriate action
receives activation which needs to be suppressed to allow the
correct action). Consequently a Simon effect is observed.

An increase in reaction time is also observed when a stim-
ulus calls for both subjects to carry out an action at the same
time (task conflict). The interpretation is that a subject also
corepresents the task rule of the partner (task corepresenta-
tion). If the subject corepresents their coactor’s task rule, the
associated action is activated when the stimulus triggers that
rule’s precondition. Like with the action conflict, a task con-
flict is not observed when the subject performs its part of the



Conditions
Setup No Conflict Action Conflict Task Conflict Action and Task Conflict
Left subject’s task green → left green → left right → left left → left
Right subject’s task red → right red → right red → right red → right
Stimulus color/location red/right red/left red/right red/left

Table 1: The experimental conditions of the social Simon task. By green → left we mean that the subject reacts to a green stimulus by
pushing the left button. In the action-conflict condition, there is an action conflict for the right subject. The parts of each task rule activated
by the stimulus either because of the relevance to the rule’s precondition or an overlap with the features of its action are printed in bold.

task individually. Action and task corepresentation can af-
fect task performance in isolation as well as simultaneously.
Results show that the reaction time increase due to task con-
flicts is larger than the one due to action conflicts. If action
and task conflict occur simultaneously, reaction time is more
than the sum of the reaction times when action and task con-
flict occur in isolation. Table 1 lists the different experimental
conditions and the conflicts they evoke for the right-hand side
subject. The no-conflict and action-conflict conditions mirror
the same conditions in the individual Simon task.

For a recent review of research involving the Simon task,
and its social variant, refer to Dolk et al. (2014).

Model and Analysis
We describe an implementation of those parts sufficient to
model the (right-hand side) subject in the individual and so-
cial Simon tasks based on our architecture. We compare the
Simon effect in our simulations with empirical data.

Sub-symbolic and symbolic memory provide representa-
tions of stimulus features (green color, red color, left position,
right position) and of the effects and motor commands of the
two available actions (push left and push right). Beliefs and
goals of agents and the effects of actions are represented with
propositional logic. Figure 4 displays the mapping between
the elements of both memories and the associations between
features in sub-symbolic memory. We assume mapping and
associations have been established by some means a priori.
To prevent clutter, we do not show here symbols and features
referring to stimulus color.

Sub-symbolic memory contains feature sets representing
the goal (action effects) of perceiving the left button being
pushed (l,u1,u2) and the right button being pushed (r,v1,v2).
Via threshold units, both feature sets forward activation to
respective features representing the motor commands achiev-
ing these goals (x1,x2,x3 and y1,y2,y3). This represents the
inverse model. Motor command features are part of a fully re-
current auto-associative connectionist network in which acti-
vation settles into that previously learnt pattern which is clos-
est to the current input (Rumelhart et al., 1986). By prior
learning, strong associations were created between the fea-
tures of the same motor command. Hence, input to both mo-
tor commands leads to the respective feature sets competing
for activation. The activation pattern requires some time to
settle to a stable state. The feature s represents a stimulus,
whose activation together with the feature for right (r) or left
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Figure 4: Elements of symbolic and sub-symbolic memory and
their relationships. At the intentional level, rectangles denote
literals in symbolic memory, diamonds denote actions. At the
perception-action level, circles denote features in sub-symbolic
memory. Dashed lines show associations between features and sym-
bols, and solid lines with arrows show associations between different
features. The threshold symbol indicates that activation through this
unit is only propagated if it exceeds a certain threshold.

(l) or features representing color (not shown in the figure)
represents the perception of a stimulus attribute. Note that
the features for right and left (r and l) are both part of a set
of features representing action effects and a set of features
representing a stimulus attribute. This amounts to the com-
mon coding of actions and observations. Note that high-level
action representations push-le f t and push-right are not avail-
able a priori but obtained by employing the inverse model.

Features in sub-symbolic memory can receive activation in
four ways: (1) when a belief, goal, or intention is created (at-
titude representation); (2) when a stimulus is perceived (stim-
ulus perception); (3) when the intentional level employs the
inverse model at the perception-action level by providing a
goal state to retrieve an appropriate motor command (action
planning); (4) when the intentional level invokes the execu-
tion of a primitive action (action execution). Feature activa-
tions in sub-symbolic memory due to stimulus perception are
translated into corresponding symbols in symbolic memory.

Only together, attitude representation and stimulus percep-
tion generate enough activation on the features representing
the action effects Pushed-Le f t (Pushed-Right) so that this ac-
tivation is propagated to the features representing the motor
command push-le f t (push-right). In Figure 4, this is repre-
sented by threshold units. For example, representing a goal
which refers to Pushed-Le f t is not sufficient for activation to
be propagated to the features of push-le f t. Likewise, acti-
vating the le f t feature is not sufficient to activate the features



of push-le f t. Thereby the agent is able to represent and plan
with goals without executing an action. We assume that ac-
tivation due to action planning and execution is sufficient to
overcome this threshold, which enables action planning based
on inverse models and the execution of motor commands. A
motor command is executed once sufficient activation is pro-
vided and its features settle into a stable pattern.

The intentional level is driven by a modified BDI inter-
preter that implements practical reasoning based on goals,
intentions, and beliefs (Rao & Georgeff, 1995). Means-end
reasoning can be based on symbolic reasoning (as is standard)
or the inverse model at the perception-action level can be em-
ployed to retrieve a motor command for a given goal state.
An agent annotates each goal and intention with the actor(s)
that is (are) supposed to hold that attitude. A joint intention
consists of a goal that has multiple actors and of its subordi-
nate intentions and goals. An agent can plan for coactors but
does not act on intentions that it is not the sole actor of.

There is an individual and a social task. In the individual
task, there is a no-conflict (NoC) and an action-conflict (AC)
condition. The social task adds a task-conflict (TC) and a
both-conflicts (TCAC) condition. All conditions can be setup
so that only one part of the task is represented (no corepre-
sentation) or both parts (corepresentation). Corepresentation
is the default but was manipulated by Sebanz et al. (2005) in
the individual and by Hommel et al. (2009) in the social task.

A top goal GoalA(SimonTask) is provided to the agent
where A is the set of agents performing the task, e.g.
{you,me}. The agent is equipped with a complex action
SimonTask, which can be performed to achieve the top goal
and itself evokes subgoals according to the experimental con-
dition, e.g. Goal{you}(Green-Stimulus ⇒ Pushed-Le f t) and
Goal{me}(Red-Stimulus ⇒ Pushed-Right). The first subgoal
means that if the stimulus is green, the left button is to be
pushed by the other agent.

In the action-conflict condition, the agent adopts the top
goal and means-end reasoning creates an intention to perform
the SimonTask action with the other subject. This leads to the
adoption of the above mentioned subgoals. With corepresen-
tation the subgoal for the other subject is represented. By
representing subgoals, activation is added to the correspond-
ing features of symbols (i.e. Green-Stimulus, Red-Stimulus,
Pushed-Le f t, Pushed-Right). This is what corresponds to
action and task corepresentation according to Sebanz et al.
(2005). Both the other subject’s task (encoded in the subgoal)
and action (via action effects) is corepresented. However, no
activation is propagated to motor command features yet.

A red stimulus is represented on the left. This leads to
an activation of the features s and l and the feature repre-
senting red. Now the feature set representing Pushed-Le f t
has sufficient input to have activation leak over into the
features representing the push-le f t action. Also, corre-
sponding propositions (Red-Stimulus and Le f t-Stimulus)
are then made true in symbolic memory. Now, the sub-
goal Goal{me}(Red-Stimulus ⇒ Pushed-Right) needs to be

achieved because Red-Stimulus is true and Pushed-Right
false. Means-end reasoning employs the inverse model to ob-
tain an action that can achieve Pushed-Right, which we call
push-right but which was not explicitly available to the agent
before. By using the inverse model, activation is added to the
feature sets representing Pushed-Right and push-right.

An intention is created to execute push-right, which further
adds to the activation of the features representing that action.
Then activation is provided to the push-right features to ex-
ecute that action but only after the recurrent motor command
network settles into a stable activation pattern. Perceptual in-
put of pushing the button then increases the activation of the
Pushed-Right features, so that the proposition is made true
and the subgoal of this agent deemed achieved.

The time until motor command features settle to a stable
activation pattern is an estimate of the response time and
hence of the Simon effect, c.f. Haazebroek et al. (2011).
Any activation on the incorrect response (push-le f t for the
right-hand side subject) increases this time. In the action-
conflict condition, the left-side stimulus adds activation to
the feature l, which is shared with the features represent-
ing Pushed-Le f t and hence provides further activation to the
features of push-le f t. In the task-conflict condition, means-
end reasoning for the other subject’s task via the inverse
model adds onto the activation of the features representing
the push-le f t motor command.

We performed a parameter estimation for this model
against the empirically observed reaction times in the differ-
ent conditions of the Simon task. The goal was to maximize
the correlation between the relative reaction times observed
empirically and the ones observed in our model. The term
“relative” here refers to the differences of reaction times be-
tween the conditions, reflecting that the Simon effect is an in-
crease of reaction time compared to a baseline condition (the
no-conflict condition). Note that the reaction time observed
in the no-conflict condition is comparable to the reaction time
in all conditions without corepresentation (in the individual
and social task); and the observed reaction times in the social
no-conflict and action-conflict conditions are comparable to
those in the individual task. Therefore the four experimental
conditions presented here implicitly represent 12 conditions.

Figure 5 shows the relative reaction times obtained empir-
ically and from the parameter set (9 parameters) that maxi-
mizes the correlation between empirical and simulated data.
By all reasonable means, this match is very close. In fact, we
found a large set of parameters that achieve a correlation of
0.95 or more, which we cannot show here due to space con-
straints. Suitable parameters cover a significant portion of the
parameter space, which suggests that the model is not overly
sensitive to any of its parameters.

Related Work

MOSAIC (Wolpert et al., 2003) is a computational model of
motor control that relies on forward and inverse models sim-
ilar to our perception-action level. In contrast to our inten-
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Figure 5: Relative reaction times using the parameter set that
maximizes the correlation between empirical and simulated
data. Simulated data points are regression-adjusted to the em-
pirical data. Empirical data drawn from Sebanz et al. (2005).

tional level, MOSAIC explains higher-level (collaborative)
planning with a hierarchy of control modules.

SCM (Hurley, 2008) is a description of motor control at
an intermediary level between neural-level mechanisms and
higher-level reasoning. SCM predicts how neural-level mech-
anisms enable higher-level ones, in particular those for joint
action such as imitation and mind-reading. Our motor control
models at the perception-action level borrow from SCM.

HiTEC (Haazebroek et al., 2011) is a cognitive architec-
ture of the interplay between perception and action based on
common coding theory. Representations of stimuli and ac-
tion effects share the same set of features. The architecture
has been used to represent the Simon task. Without inten-
tional mechanisms, however, higher-level modulations such
as social factors cannot easily be represented.

Conclusion
The cognitive mechanisms underlying joint action are not yet
well understood. We describe a computational architecture
of human joint action that incorporates an interplay between
higher- and lower-level coordination processes and have re-
produced results of four conditions of the social Simon task.
Our model is consistent with the referential coding account
of Dolk et al. (2014), that provides a novel approach to an-
alyzing the Simon effect. While explorations with computa-
tional models cannot directly shed light on human cognition,
c.f. Sun (2009), our demonstration contributes to analyses of
potential building blocks for mechanisms involved in coor-
dination in joint action – whether it be in purely human, or
human-robot interaction contexts.
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