
Functional Cognitive Models of Malware Identification 
 

Christian Lebiere, Stefano Bennati, Robert Thomson ({cl, sbennati, thomsonr}@andrew.cmu.edu) 
Carnegie Mellon University 

5000 Forbes Avenue, Pittsburgh, PA 15213 USA 
 

Paulo Shakarian, Eric Nunes ({shak, eric.nunes}@asu.edu) 
Arizona State University 

699 S. Mill Avenue, Tempe, AZ 85281 USA 
 
 

Abstract 

An important source of constraints on unified theories of 
cognition is their ability to perform complex tasks that are 
challenging for humans. Malware reverse-engineering is an 
important type of analysis in the domain of cyber-security.  
Rapidly identifying the tasks that a piece of malware is 
designed to perform is an important part of reverse 
engineering that is manually performed in practice as it relies 
heavily on human intuition.  We present an automated 
approach to malware task identification using two different 
approaches using ACT-R cognitive models.  Against a real-
world malware dataset, these cognitive models significantly 
out-perform baseline approaches while demonstrating key 
cognitive characteristics such as the ability to generalize to 
new categories and to quickly adapt to a change of 
environment.  Finally, we discuss the implications of our 
approach for applying cognitive models to complex tasks. 

Keywords: functional cognitive models, ACT-R, Bayesian 
models, decision trees, malware detection. 

Introduction 
Malware reverse-engineering is an important type of 

analysis in the domain of cyber-security.  Rapidly 
identifying the tasks that a piece of malware is designed to 
perform is an important part of reverse engineering and is 
manually performed in practice as it relies heavily on human 
intuition (Sikorski & Honig, 2012). The difficulty of this 
task increases substantially when historically studied 
malware samples are significantly different (i.e. members of 
a different malware family).  Cognitive architectures such as 
ACT-R (Anderson, Bothell, Byrne, et al., 2004) have 
previously been shown to effectively model human 
cognition on a variety of decision-making (Lebiere, 
Gonzalez, & Martin, 2007) and general intelligences tasks 
(Lebiere, Gonzalez, & Warwick 2009), including complex 
domains such as intelligence analysis (Lebiere, Pirolli, 
Thomson, et al., 2013).  Further, they have been shown to 
perform well on reasoning tasks where historical knowledge 
is sparse, limited, or dissimilar to the current context 
(Taatgen, Lebiere, & Anderson, 2006).  However, models 
have occasionally had to abstract from some of the details of 
the high-fidelity framework that cannot be constrained by 
data in order to scale to complex tasks involving substantial 
human expertise (e.g., Sanner et al, 2000).  Our work fits 
into that approach by selectively using some features of the 
cognitive architecture while temporarily ignoring others. 

Malware Identification 
In this paper, we leverage such models to identify the tasks 
associated with a piece of malware.  Using a real-world 
malware dataset (Mandiant Corp, 2013), these cognitive 
models identify sets of tasks with an unbiased F1 measure 
of 0.94 – significantly out-performing baseline approaches.  
Even when trained on historical datasets of malware 
samples from different families, our ACT-R cognitive 
models still maintain the precision of baseline methods 
while providing a significant improvement to recall  by 
identifying over 60% of malware tasks. 

Existing work on malware classification falls into two 
general categories: (1) determining if a given binary is 
malicious (Tamersoy, Roundy & Horng 2014; Firdausi, Lim 
Erwin, & Nugroho, 2010) and (2) classifying malware by 
family (Bayer, Comparette, Hlauschek, et al., 2011; Kinable 
& Kostakis, 2011; Kong & Yan, 2013).  The problem of 
identifying whether a binary is malware is complementary 
to this effort (a “first step”) – as an analyst must first 
identify malware before then determining what it does.  Our 
work substantially differs from malware family 
classification as we look to directly infer the tasks that a 
malware was created to perform whereas malware family 
classification is mainly used to help guide an analyst into 
identifying tasks by first identifying a family.  It is 
noteworthy that we were able to train our classifiers on data 
of malware of different families than the malware we are 
attempting to classify and were still able to obtain a set of 
tasks with over 60% recall on the best-performing cognitive 
models.  Further, malware family classification has suffered 
from two primary draw-backs: (1) disagreement about 
malware family “ground truth” as different analysts (i.e. 
Symantec and MacAfee) cluster malware into families 
differently; and (2) previous work has shown that some of 
these approaches mainly succeed in “easy to classify” 
samples (Perdisci, 2012; Li, Liu, Gai & Reiter, 2010) – 
where an “easy to classify” family is a family that is 
typically agreed upon by multiple malware analysis firms.  
By inferring malware tasks directly, we avoid both of these 
pitfalls.  Further, as a side-effect, we create a probability 
distribution over malware families as part of an intermediate 
step – though the ultimate inference of malware tasks is 
independent of how the historical malware families are 
classified by family. 

90



ACT-R Models 
The models are built using the mechanisms of the ACT-R 
cognitive architecture and learn to recognize malware 
samples based upon a limited training schedule similar to 
the actual experience of a human analyst.  Given a malware 
sample, the model generates a probability distribution over a 
set of malware families then infers a set of likely malware 
intents based upon that distribution. The models primarily 
leverage the subsymbolic (statistical) mechanisms of the 
ACT-R architecture, especially the activation calculus 
underlying retrieval from long-term declarative memory.  
Each sample is represented by its set of static and dynamic 
attributes. The model operates in two stages: first by family, 
then by intent. To assign family, the model generates a 
probability distribution over the set of possible malware 
families from the activation in declarative memory of the 
chunks representing those families. To assign intents in a 
second pass, the model combines the probability distribution 
over families with a representation linking each malware 
family to known intents. Two distinct models were created 
that leveraged separate parts of the activation calculus. 

ACT-R Rule-Based Model 
This ACT-R model is based on the Bayesian components of 
the activation calculus, specifically the base-level and 
spreading activation components. Given a malware training 
sample with its set of attributes, along with the ground truth 
family, we derive a pair of conditional probabilities p(a/f) 
and p(a/¬f) for attribute a belonging (or not) to family f.  
Those probabilities are used to set the strengths of 
association from each attribute a to each family chunk f.  
Similarly, Bayesian priors p(f) are used to set the base-level 
of each family.  Given the attributes of the current malware 
held in the goal buffer context, a retrieval for family chunks 
(the “rules”, not to be confused with production rules) 
computes their activation and sets the probability of each 
family according to the Boltzmann (softmax) equation. 
Intents are then determined by summing up the probability 
of the families associated with a given intent, with an 
appropriately set threshold (50%). 

ACT-R instance-Based Model 
This model follows the instance-based learning theory (IBL; 
Gonzalez, Lerch, and Lebiere, 2003) that is particularly 
relevant to modeling naturalistic decision making in 
complex dynamic situations. The instance-based approach is 
an iterative learning method that reflects the cognitive 
process of accumulating experiences and using them to 
make decisions. In this case a chunk is created for each 
malware instance associating the set of attributes of that 
malware with its family. When a new malware is 
encountered, a retrieval for past chunk instances is triggered 
with the purpose of inferring their family.  The retrieval 
primarily uses the base-level and partial matching 
components of the activation equation.  The base-level 
reflects the recency and frequency of each instance 

according to the power law of learning and decay, while the 
similarity measure used in partial matching is computed as 
the overlap (dot product) between the attribute vector of the 
current malware and each sample in memory.  A probability 
distribution over families is generated by the blending 
mechanism that sums up the evidence supporting each 
family from the individual instance chunks (Lebiere, 1999; 
Wallach & Lebiere, 2003).  The same process is used for 
generating intent judgments, this time partial matching the 
family probability distribution of this malware instance 
against those of past instances.  The intent chunks that reach 
the activation threshold are given as answers. 

Experiment 
We created a dataset from 132 malware samples used by the 
APT1 cyber espionage group as identified by the popular 
report by Mandiant Inc (Mandiant, 2013). Dynamic 
malware analysis was performed using the ANUBIS 
sandbox which generates an XML-formatted report for each 
malware. From the XML data, a total of 1740 malware 
attributes were identified (see Table 1). 
 

Table 1: Sample attributes from Anubis malware sandbox 
ATTRIBUTES          INTUITION 
hasDynAttrib Malware has a generic attribute determined 

in the analysis 
usesDll(X) Malware uses a library X 
regAct Malware conducts an activity in the 

registry 
fileAct Malware conducts an activity on a certain 

file 
proAct Malware initiates or terminates a process 
 
Each malware sample belonged to one of 15 families (e.g., 
BISCUIT). Based on malware family description, we 
associated a set of tasks with each family that each malware 
in that family was designed to perform. In total, 30 malware 
tasks were identified for the given malwares (see Table 2). 
On average, each family performed 9 tasks. 
 

Table 2. Sample of malware tasks. 
    TASK                     INTUITION 
beacon Beacons back to the adversary’s system 
enumFiles Designed to enumerate files on the target 
ServieManip Manipulates services running on the 

target 
takeScreenShots Takes screen shots 
upload Designed to upload files from the target 
 

Decision Tree 
We implemented a decision tree as a baseline approach.  
This hierarchical algorithm is widely used for classification 
problems (Alpaydin, 2007). We used information gain to 
find the best split at a node.  The gain was calculated using 
malware attributes.  In order to avoid over-fitting, the 

91



terminating criteria was set to less than 5% of total samples. 
Note that labels are not used for terminating the tree, hence 
the leaf nodes may or may not be pure, generating a 
probability distribution over the malware families. 

Results 
We compared the decision tree (DT) approach to 
implementations of the rule-based and instance-based ACT-
R models (ACTR-R and ACTR-IB respectively). Precision, 
recall and F1 values were computed for the inferred 
adversarial tasks. On average, each sample was associated 
with 9 tasks out of 30 different tasks in total. DT predicted 9 
tasks per sample, ACTR-R 9 tasks, and ACTR-IB 10 tasks. 

Leave One Out Cross-Validation (LOOCV) 
In leave one out cross validation, for N malware samples, 

we train on N-1 samples and test on the remaining one. This 
procedure was repeated procedure for all samples and the 
results were averaged (see Figure 1).   

ACTR-IB outperformed both the DT and ACTR-R 
models; average F1 = 0.94 vs .81 (t (132) = 5.77,   p = 5e-8), 
and .82 (t (132) = 5.35, p=3.83-7) respectively.  The 
Bayesian nature of the ACT-R model dominates because it 
is trained on a stable, almost complete set of statistics. The 
IBL model is superior because it uses the full pattern of the 
probability distribution over families rather than just a sum. 

 
Figure 1. Average Precision, Recall, F1 and Family 

prediction comparisons for DT, ACTR-IB and ACTR-R. 
 

These three approaches were also evaluated with respect 
to predicting the correct family (before the tasks were 
determined). Both the ACTR-IB and ACTR-R cognitive 
models outperform DT to predict the correct malware 
family. ACTR-IB has an average family prediction accuracy 
of 0.82, outperforming the DT model’s accuracy of 0.6, 
t(132) = 5.35, p = 3.8e-7. ACTR-R also outperformed with 
prediction accuracy of 0.72 vs 0.6, t(132) = 3.23, p = 1e-3. 
Figure 2 (below) shows family-wise performance for 
LOOCV. This gives an unbiased estimation regarding 
predictions for different malware families, giving insight as 
to which families are difficult to predict.  

ACTR-IB outperforms DT in 9 out of 15 malware 
families with an average F1 difference of 0.3 with at least 
99% confidence, t(132) = 4, p = 0.01. DT performs 
qualitatively better than ACTR-IB in 4 out of 15 malware 

families with an average F1 difference of 0.05, but this 
difference is not statistically significant, t(132) = 0.76, p = 
0.49. Similarly, ACTR-R outperforms DT in 7 out of 15 
malware families with an average F1 difference of 0.27, 
while DT does not perform significantly better than ACTR-
R, t(132) = 0.28, p = 0.786.  

Among the cognitive models ACTR-IB performs 
qualitatively better than ACTR-R in 12 out of 15 families 
with average F1 difference of 0.08, but this difference is not 
statically significant, t(132)= 1.58, p = 0.19.   

 
Figure 2. F1 measure by malware families for leave one 
out cross validation for DT, ACTR-IB and ACTR-R. 

 
 Figure 3. Average F1 values for 15 malware families (a) 

and the average precision, recall and F1 across all families 
(above) for DT, ACTR-IB and ACTR-R. 

Leave One Family Out Cross-Validation  
To see how the models generalize to unseen malware 
families, we performed a leave-one-family-out comparison, 

92



where we test the models against one previously unseen 
malware family. Both the ACTR models significantly 
outperform the decision tree in terms of precision, recall and 
F1 (see Figure 3). This is primarily due to the statistical 
nature of the classification performed by the cognitive 
models over the logical classification of the decision tree. 

Despite the overall higher performance for the cognitive 
models over the decision-tree, there were certain families 
where the decision tree performed particularly well when 
compared to the cognitive model. In the F1 comparison the 
decision tree peaks for TARSIP-Eclipse and TARSIP-
Moon. Both these families are variants of the same malware 
profile. TARSIP-Eclipse performs 12 tasks, while TARSIP-
Moon performs 13. They have 12 tasks in common hence 
during testing one family gets incorrectly predicted as the 
other while still getting almost all their tasks correct. 

90/10 Training/Testing  
Finally, we randomly divided the data into 90% training and 
10% testing. This measure was then divided into 10 phases, 
where in the first phase the models were trained with 10% 
of the total training data (which was 90% of the dataset) and 
then an additional 10% of the training data was added for 
each subsequent phase. Note that each phase gets tested on 
the same test data. This allows us to observe the 
performance of the decision tree and cognitive models for 
incremental learning across the training data.  In the real 
world, humans need to be able to learn from small partial 
samples and adapt quickly to changes in the underlying 
distribution. As shown in Figure 4, it is clear that the ACT-
R models outperform the decision tree in precision, recall 
and F1 measures.  This is particularly true of the instance-
based model, which uses the dynamic nature of the blending 
mechanism to generalize over the entire space from just a 
few instances. 

An important point to note is that the cognitive models 
achieve the best performance against the decision tree with 
only 40% of the training data. T-tests were computed for 
each fraction of training data comparing each of the ACT-
IB, ACTR-R, and DT models against each other. The results 
of both ACTR models statistically outperformed decision 
tree (all p < .001) except for when 30% of the training data 
was used (p = 0.46). We hypothesized that our random 
sample for the 30% training data phase may have 
underrepresented the population of malware samples where 
the decision tree performs poorly. By examining the family-
wise performance for leave one out cross validation (see 
Figure 2) we determined that decision tree has difficulty 
predicting malware tasks from families BISCUIT, WEBC2-
CSON, WEBC2-GREENCAT, TABMSGSQL, 
COOKIEBAG and NEWSREELS (difference in F1 measure 
is greater than 0.3 as when compared to ACTR-IB or 
ACTR-R). The overall fraction of malware samples 
belonging to these families is 0.36 and in all phases, except 
it is 0.31 in the 30% phase, thus relatively increasing the 
performance of decision tree at that point. 
 

 
Figure 4. Average Precision, Recall and F1 for fraction of 
training data of 200 trials for DT, ACTR-IB and ACTR-R. 

Discussion 
These ACT-R models are not full-fledged high-fidelity 
models in that, while they make sole use of cognitive 
mechanisms, they do not use all aspects of the architecture, 
nor are they directly compared to human data.  The primary 
reasons for this approach are three-fold: (1) because of the 
challenging nature of the task, we decided to focus on the 
functional aspects of the model; (2) we did not believe that 
the unmodeled aspects of the task would significantly 
impact the performance of the model; (3) we did not have 
human performance data with which to assess the model. 

Regarding (1), we believe that there is a valid use of 
cognitive architectures for artificial intelligence that makes 
use of basic cognitive mechanisms while not necessarily 
making use of all constraints of the architecture.  In that 
case, the model has to be evaluated on functional grounds, 
which is the approach that we took.  However, we also 
discuss in the concluding section which aspects of the 
model were currently not cognitively plausible, such as the 
lack of working memory constraints, and how they could be 
remedied, perhaps by improving current deficiencies of the 

93



architecture.  In general, artificial intelligence constraints, 
such as high performance on complex tasks, can serve a 
valuable purpose in driving the development of cognitive 
architectures.  Conversely, constraints on unified theories of 
cognition can be used to design more useful benchmark 
tests of artificial intelligence (Lebiere et al., 2015). 

Regarding (2), Reitter & Lebiere (2010) introduced a 
modeling methodology called accountable modeling that 
recognizes that not every aspect of a cognitive model is 
reflected in measurable performance, and thus that human 
performance data cannot constrain all aspects of a model.  In 
that case, it is arguably better to specifically state which 
aspects of the model are not constrained by data, and rather 
than mock up those aspects in plausible but impossible to 
validate manner, simply treat them as unmodeled processes.  
This approach results in simpler models with a clear link 
between mechanisms used and results accounted for, rather 
than being obscured by complex but irrelevant machinery. 

Regarding (3), we are exploring obtaining human data 
through empirical studies using expert malware analysts to 
provide the kind of data that can be directly compared 
against performance provided by a full ACT-R model. 

Conclusion 
We present two cognitive models of malware intent 
classification.  Those models are both based on the ACT-R 
cognitive architecture but leverage separate mechanisms and 
have distinct advantages.  The rule-based model leverages 
the Bayesian memory activation mechanisms.  The 
representation is more compact, with a single memory 
chunk for each family whose associations abstract the 
various instances belonging to that category, but those 
associations need to be computed and do not involve time 
discounting and other adaptive features (Thomson & 
Lebiere, 2013). The instance-based model is based on a 
more direct, incremental learning that accumulates malware 
instances in long-term memory and leverages neurally 
plausible pattern matching processes such as partial 
matching and blending (Lebiere et al., 2013) but is less 
parsimonious with storage and thus has potential scalability 
issues for large data sets. 

A number of further model developments can address 
those and other issues.  The first computational efficiency 
issue is the size of the feature set, which can easily number 
in the hundreds for a given malware.  It is also an issue of 
cognitive plausibility since feature set size is associated to 
working memory, usually assumed in humans to be about 
seven or so (Miller, 1956).  Reducing feature set size could 
also potentially improve generalization by removing 
features that are only misleadingly associated with specific 
intents and focusing on those that are causally related to 
malware function.  One potential approach is to choose 
among features those that most contribute to correct 
performance.  This can be implemented in ACT-R by 
relying on the production utility reinforcement learning 
mechanism to sequentially select specific features 
(Rutledge-Taylor et al., 2011). Given the limited working 

memory constraint in the form of a fixed spreading 
activation parameter, this can benefit performance both in 
eliminating spurious features and focusing limited 
attentional resources on the most diagnostic features. 

Another approach to reducing feature set size is to build 
higher order features with which to represent malware 
instances.  This process is similar to the concept of 
chunking in expertise-driven domains such as chess playing 
(Chase & Simon, 1973).  When those higher-order features 
are known, they can be directly incorporated in the model 
and have been shown to improve learning performance by 
orders of magnitude (Sanner et al., 2000).  Alternatively, a 
deep learning algorithm could be used to infer those features 
in a manner similar to past efforts combining ACT-R with 
neural learning mechanisms (e.g., Jilk et al., 2008, 
Vinokurov et al, 2011), illustrating the benefits of 
combining symbolic and neural architectures. 

A second model development to improve computational 
efficiency for the instance-based learning model would be to 
reduce the size of the instance set in long-term memory.  
One possibility is to reinforce the most similar malware 
chunk(s) already in memory instead of creating a new one, 
which has already been shown to preserve generalization 
while sharply reducing memory requirements and retrieval 
process demands (Sanner et al, 2000).  This approach results 
in the emergence of prototypes that can be seen as a middle 
ground between the single-chunk representation of 
categories in the rule-based model and the pure instance-
based approach of the IBL mode. 
 Another approach to reducing the size of the 
feature set would be to include an ontology of malware 
functionality  (e.g., Mateos et al., 2012) that would allow 
the model to reason over the association of features and 
intents and prune the representation (e.g., Oltramari et al., 
2014).  This process of combining symbolic reasoning to 
guide statistical learning is one of the main advantages of 
integrated cognitive architectures. 

Acknowledgements 
This work is supported by the Intelligence Advanced 
Research Projects Activity (IARPA) via Department of the 
Interior (DOI) contract number D10PC20021. The U.S. 
Government is authorized to reproduce and distribute 
reprints for Governmental purposes notwithstanding any 
copyright annotation thereon. The views and conclusions 
contained hereon are those of the authors and should not be 
interpreted as necessarily representing the official policies 
or endorsements, either expressed or implied, of IARPA, 
DOI, or the U.S. Government. 

References 
Alpaydin, E. 2007. Introduction to Machine Learning. 

Massachusetts Institute of Technology. 
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., 

Lebiere, C., & Qin, Y. 2004. An integrated theory of 
mind. Psychological Review, 11(4), 1036-1060. 

94



Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., 
Kirda, E. 2009. Scalable, behavior- based malware 
clustering. In NDSS. 

Chase, W. G., & Simon, H. A. 1973. Perception in Chess. 
Cognitive Psychology, 4, 55-61. 

Firdausi, I; Lim, C.; Erwin, A; & Nugroho, AS. 2010. 
Analysis of Machine learning Techniques Used in 
Behavior-Based Malware Detection. In Proceedings of 
Second Annual Conference of Advances in Computing, 
Control and Telecommunication Technologies. 201-203. 

Gonzalez, C., Lerch, J. F., & Lebiere, C. 2003. Instance-
based learning in dynamic decision making. Cognitive 
Science, 27, 591-635. 

Jilk, D. J., Lebiere, C., O’Reilly, R. C., & Anderson, J. R. 
2008. SAL: An explicitly pluralistic cognitive 
architecture. Journal of Experimental and Theoretical 
Artificial Intelligence, 20(3), 197-218. 

Kinable, J., Kostakis, O. 2011. Malware classification based 
on call graph clustering. J. Comput. Virol. 7(4), 233–245. 
DOI 10.1007/s11416-011-0151-y. 

Kong, D., & Yan, G. 2013. Discriminant malware distance 
learning on structural information for automated malware 
classification. In: Proceedings of the 19th ACM SIGKDD 
international conference on Knowledge discovery and 
data mining, 1357–1365. ACM, New York, NY, USA. 
DOI 10.1145/2487575.2488219.  

Lebiere, C. 1999. The dynamics of cognition: An ACT-R 
model of cognitive arithmetic. Kognitionswissenschaft., 8 
(1), 5-19. 

Lebiere, C., Gonzalez, C., & Martin, M. 2007. Instance-
based decision making model of repeated binary choice. 
In Proceedings of the 8th International Conference on 
Cognitive Modeling. Ann Arbor, Michigan, USA. 

Lebiere, C., Gonzalez, C., & Warwick, W. 2009. A 
Comparative Approach to Understanding General 
Intelligence: Predicting Cognitive Performance in an 
Open-ended Dynamic Task. In Proceedings of the Second 
Artificial General Intelligence Conference (AGI-09). 
Amsterdam-Paris: Atlantis Press. 

Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-
Taylor, M., Staszewski, J., & Anderson, J. R. 2013.  A 
functional model of sensemaking in a neurocognitive 
architecture. Computational Intelligence & Neuroscience. 

Lebiere, C, Bothell, D., Morrison, D., Oltramari, A., Martin, 
M., Romero, O., Thomson, R., & Vinokurov, J. (2015).  
Strong Cogsci: Guidance from cognitive science on the 
design of a test of Artificial Intelligence.  Proceedings of 
the Beyond the Turing Test Workshop, AAAI-2015. 

Li, P., Liu, L., Gao, D., & Reiter, M. K. 2010. On 
Challenges in Evaluating Malware Clustering. 
Proceedings of the 13th International Symposium on 
Recent Advances in Intrusion Detection, Ottawa, Canada. 

Mandiant. 2013. APT1: Exposing One of China's Cyber 
Espionage Units. Mandiant Corp. URL: 
http://intelreport.mandiant.com/ retrieved 1/21/2014. 

Mateos, V., Villagrá, V. A., Romero, F., & Berrocal, J. 
2012. Definition of response metrics for an ontology-

based Automated Intrusion Response Systems. Computers 
& Electrical Engineering, 38(5), 1102-1114. 

Miller, G. A. 1956. The magical number seven, plus or 
minus two: Some limits on our capacity for processing 
information.  Psychological Review, 63 (2), 81–97. 

Oltramari, A., Vinokurov, Y., Lebiere, C., Oh, J., & Stentz, 
A. 2014. Ontology-Based Cognitive System for 
Contextual Reasoning in Robot Architectures. In 2014 
AAAI Spring Symposium Series. 

Perdisci, P., & ManChon, U. 2012. VAMO: Towards a 
Fully Automated Malware Clustering Validity Analysis. 
In Proceedings of the 28th Annual Computer Security 
Applications Conference. 

Reitter, D., & Lebiere, C. (2010). Accountable Modeling in 
ACT-UP, a Scalable, Rapid-Prototyping ACT-R 
Implementation.  In Proceedings of the 2010 
International Conference on Cognitive Modeling.  

Rutledge-Taylor, M., Lebiere, C., Vinokurov, Y., 
Staszewski, J., & Anderson, J. R. 2011. Bridging the gap: 
A neurally plausible functional model of sensemaking. In 
Proceedings of Biologically Inspired Cognitive 
Architectures, 331-340. 

Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. 2000. 
Achieving efficient and cognitively plausible learning in 
backgammon. In Proceedings of the Seventeenth 
International Conference on Machine Learning, 823-830. 
San Francisco: Morgan Kaufmann. 

Sikorski, M., Honig, A. 2012. Practical Malware Analysis: 
The Hands-On Guide to Dissecting Malicious Software, 
1st edn. No Starch Press, San Francisco, CA, USA. 

Taatgen, N., Lebiere, C. & Anderson, J.R. 2006.  Modeling 
paradigms in ACT-R.  In Sun, R. (Ed) Cognition and 
Multi-Agent Interaction: From Cognitive Modeling to 
Social Simulation.  NY, NY: Cambridge University Press. 

Tamersoy, A., Roundy, K. A., & Horng, D. P. 2014. Guilt 
By Association: Large Scale Malware Detection by 
Mining File-Relation Graphs". In ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining 
(KDD) 2014. New York City, NY.  

Thomson, R. & Lebiere, C. 2013. Constraining Bayesian 
Inference with Cognitive Architectures: An Updated 
Associative Learning Mechanism in ACT-R. 
In Proceedings of the 35th Annual Conference of 
the Cognitive Science Society. Berlin, Germany. 

Vinokurov, Y., Lebiere, C., Herd, S. A., & O'Reilly, R. C. 
2011. A Metacognitive Classifier Using a Hybrid ACT-
R/Leabra Architecture. Lifelong Learning AAAI 
Workshop. 

Wallach, D. & Lebiere, C. 2003. Conscious and 
unconscious knowledge: Mapping to the symbolic and 
subsymbolic levels of a hybrid architecture. In Jimenez, 
L. (Ed.) Attention and Implicit Learning. Amsterdam, 
Netherlands: John Benjamins Publishing Company. 

 
 

95


