
Explaining Eye Movements in Program Comprehension using jACT-R
Sebastian Lohmeier (sl@monochromata.de)

TU Berlin, Germany, M.Sc. Informatik degree course

Nele Russwinkel (nele.russwinkel@tu-berlin.de)
TU Berlin, FG Kognitive Modellierung in dynamischen MMS

Sekr. MAR 3-2, Marchstraße 23, 10587 Berlin, Germany

Abstract
We propose that experimentally recorded sequences of eye
movements are input into a cognitive model. By removing
the need to model decisions on where to look next during a
complex task, modelling long-term activation effects in real-
world data becomes conceivable. Eye movement records from
experiments on program comprehension shall be used because
object-oriented source code provides knowledge structures re-
quired by a cognitive model of comprehension. We introduce
a tool that supports this new approach. The tool is based on
an implementation of the ACT-R cognitive architecture written
in the Java programming language and could therefore attract
Java developers to the cognitive modelling community.
Keywords: tools; ACT-R; Java; eye movements; program
comprehension; cohesion; activation

Motivation
Eye movements of programmers reading computer programs
can be explained by models written in a cognitive architecture
like ACT-R (Anderson et al., 2004). This is comparable to,
but may be easier to achieve, than explaining eye movements
in natural language comprehension. Modelling program com-
prehension in a Java-based implementation of ACT-R could,
in addition, attract programmers to ACT-R that are capable of
contributing to ACT-R as a cognitive architecture.

Psycholinguists like Garrod and Terras (2000) have stud-
ied coherence effects (i.e. effects of semantic relations ex-
pressed in a text) in reading using eye tracking and provided
explanations for their findings that are suitable for cognitive
modelling. While it would be possible to model the results
of these experiments in ACT-R, there are a number of open
problems for such models. E.g. representations of lexical and
conceptual knowledge required for these tasks are not readily
available (Lohmeier & Russwinkel, 2013).

ACT-R has already been implemented in Java (see jACT-
R1 and Java ACT-R2) and can therefore be integrated directly
into the development environments used by Java program-
mers, making ACT-R development possible in a well-known
programming language. This would also allow ACT-R tools,
e.g. for visualisation, to be developed using a larger set of
existing application programming interfaces and frameworks
than is available for Lisp.

Eye Movements in Program Comprehension
Mandel (1984) compared measures of eye movements during
reading to predictions generated by a computational imple-
mentation of a theory from cognitive linguistics. Burkhardt,

1http://jact-r.org/
2http://cog.cs.drexel.edu/act-r/

Détienne, and Wiedenbeck (1997) used a related theory to ex-
plain findings on the comprehension of the source of object-
oriented computer programs. It has also been suggested that
computational cognitive models be used to model program
comprehension (Hansen, Lumsdaine, & Goldstone, 2012).
For object-oriented programming languages provide knowl-
edge structures required for models from cognitive linguistics
(Lohmeier, 2014), eye movements of programmers are fur-
thermore suitable for cognitive modelling based on theories
from cognitive linguistics: Recorded eye movements could
be used to model activation of conceptual knowledge repre-
sented in the source code. Because the source code can be
parsed automatically, the conceptual knowledge expressed in
the source code can be made available to the cognitive model
and can be used to compute activation values to explain co-
herence effects in source code that are comparable to those
found in studies like Garrod and Terras (2000).

Eye Tracking and jACT-R in Eclipse
We are developing a plug-in that controls an eye tracking de-
vice and sends eye movement data to a cognitive model.

Data capture and analysis
Similar to iTrace (Walters, Falcone, Shibble, & Sharif, 2013),
our plug-in enables the Eclipse IDE3 to calibrate an eye
tracker, to receive data from it, to save the data to disk and to
assign the data to user interface elements and words displayed
at locations fixated by the user. Both iTrace and our plug-in
support different eye trackers and user interface elements and
can be extended to support additional ones. Our plug-in has
been used to connect to eye tracking devices of SMI and The
Eye Tribe and is able to map fixations to Text, StyledText,
Label and Button user interface elements. Our plug-in imple-
ments complex event processing through an extensible chain
of filters through which eye tracking events are passed. There
are different modes, e.g. for tracking, replay and batch replay
so that visualising filters can render fixations on screen during
replay, but not in tracking or batch replay mode.

Interfacing eye movements and model
Preparation of data for the jACT-R model is implemented as
a filter that saves saccades, fixations, and words assigned to
fixations, to a log file. While tools like those of Salvucci
(2000) and Heinath, Dzaack, Wiesner, and Urbas (2007) com-
pare records of eye movements obtained experimentally to

3https://www.eclipse.org/

86



eye movements generated by a model, the model we are de-
veloping does not compute durations and targets of saccades
but receives this information from the log file recorded dur-
ing an experiment. The model executes cognitive processes
that yield activation of knowledge representations and fixa-
tion durations. The jACT-R model is launched as a separate
process within the Eclipse IDE. While data capture, analyis
and submission to the model could all happen on-line, analy-
sis and input into the model are currently separated to be able
to verify the data before executing the model.

Our model does not generate saccades, but follows
Salvucci (2001) in how it distinguishes but couples visual at-
tention and the onset time of saccades, whose durations are
read from the log file. For each saccade a duration is pro-
vided. Fixations come with a duration and (multiple) words
within foveal and parafoveal vision. The model generates fix-
ation durations. In addition, activation values are provided
by the model. If a passage of source code has low cohesion
that leads to regressive saccades in the experimental data, the
model can explain this behavioural effect by means of low
activation of chunks in memory that makes memory requests
for a chunk referred to by a recently fixated word fail.

Discussion

The reconstructive model we aim at differs significantly from
typical ACT-R models that generate behaviour in a goal-
directed way. The reconstructive model attempts to exe-
cute low-level cognitive processes that fit the given fixations.
There will be situations in which a sequence of fixations will
end in a way that makes clear to a human analyst of the model
that the model failed to execute cognitive processes that ex-
plain the behavioural data in a correct or plausible way. The
better a model fits the data, the fewer of such occasions will
occur. Depending on the context-dependence of the cognitive
processes implemented, it may also be required to test differ-
ent mutually exclusive sequences of cognitive processes and
select the one that fits the behavioural data best. That would
require the state of the cognitive architecture be replicated for
each of such sequence and is beyond our current implementa-
tion which aims at an initial model of longer-lasting activation
scenarios e.g. based on 40 minutes of eye movements.

Conclusion

While not the only possible application of ACT-R for ex-
plaining records of eye movements, eye tracking studies in
program comprehension are well suited for this kind of mod-
elling because the source code provides knowledge structures
that can be used in the cognitive model. Restricting the model
to low-level cognitive processes as used to establish coher-
ence during reading should permit the implementation of a
model that is able to explain rather long-term phenomena
compared to models that generate goal-oriented behaviour
themselves. Implementing the model in jACT-R could attact
further developers to cognitive architectures.

Acknowledgments
We thank Anthony Harrison for implementing jACT-R and
for helping us to get started with it.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory
of mind. Psychological Review, 111(4), 1036–1060.

Burkhardt, J.-M., Détienne, F., & Wiedenbeck, S. (1997).
Mental representations constructed by experts and
novices in object-oriented program comprehension.
In S. Howard, J. Hammond, & G. Lingaard (Eds.),
Human-computer interaction: INTERACT ’97. Lon-
don: Chapman & Hall.

Garrod, S., & Terras, M. (2000). The contribution of lex-
ical and situational knowledge to resolving discourse
roles: Bonding and resolution. Journal of Memory and
Language, 42, 526–544.

Hansen, M. E., Lumsdaine, A., & Goldstone, R. L. (2012).
Cognitive architectures: A way forward for the psy-
chology of programming. In Onward! 2012: Pro-
ceedings of the ACM international symposium on New
ideas, new paradigms, and reflections on programming
and software (pp. 27–37).

Heinath, M., Dzaack, J., Wiesner, A., & Urbas, L. (2007).
Simplifying the development and the analysis of cog-
nitive models. In S. Vosniadou, D. Kayser, & A. Pro-
topapas (Eds.), Proceedings of EuroCogSci07. Hove:
Erlbaum.

Lohmeier, S. (2014). Computational linguistics vice versa.
In B. du Boulay & J. Good (Eds.), Proceedings of the
psychology of programming interest group annual con-
ference 2014 (pp. 191–196).

Lohmeier, S., & Russwinkel, N. (2013). Issues in implement-
ing three-level semantics with ACT-R. In Proceedings
of the 12th international conference on cognitive mod-
eling (ICCM).

Mandel, T. S. (1984). An eye movement investigation of a
process model of comprehension (Tech. Rep. No. 84-
132). University of Colorado, Institute of Cognitive
Science.

Salvucci, D. D. (2000). An interactive model-based envi-
ronment for eye-movement protocol analysis and visu-
alization. In Proceedings of the 2000 symposium on
eye tracking research & applications (pp. 57–63). New
York: ACM.

Salvucci, D. D. (2001). An integrated model of eye move-
ments and visual encoding. Cognitive Systems Re-
search, 1(4), 201–220.

Walters, B., Falcone, M., Shibble, A., & Sharif, B. (2013).
Towards an eye-tracking enabled IDE for software
traceability tasks. In International workshop on trace-
ability in emerging forms of software engineering
(TEFSE), 2013 (pp. 51–54).

87


