
An Adaptable Implementation of ACT-R with Refraction
in Constraint Handling Rules
Daniel Gall (daniel.gall@uni-ulm.de)

Institute of Software Engineering and Compiler Construction, Ulm University
89069 Ulm, Germany

Thom Frühwirth (thom.fruehwirth@uni-ulm.de)
Institute of Software Engineering and Compiler Construction, Ulm University

89069 Ulm, Germany

Abstract

ACT-R is a popular cognitive architecture. Although its psy-
chological theory is well-investigated, it lacks a formal founda-
tion. This inhibits computational analysis of cognitive models
and leads to technical artifacts in ACT-R implementations.
In this paper we present an adaptable implementation of
ACT-R derived from our formalization presented in previous
work. We show how this formal approach supported by the use
of the declarative programming language Constraint Handling
Rules (CHR) leads to an implementation of the ACT-R close
to the theory while maintaining interoperability. Due to the
adaptability of our implementation we are able to extend the
conflict resolution strategy of the system by production rule
refraction in our implementation easily avoiding the problem
of over-programming in some ACT-R models. The use of CHR
facilitates the application of analytical methods from the CHR
ecosystem paving the way for ACT-R model analysis.
Keywords: ACT-R, Constraint Handling Rules, conflict reso-
lution, refraction, model analysis

Introduction
ACT-R is a popular cognitive architecture with lots of users
and application models. The psychological theory is well-
investigated and allows for studying of human-behavior by
performing experiments both with humans and artificial ACT-
R agents. However, from a computational point of view,
ACT-R lacks a formal theory of its underlying computational
concepts which inhibits analysis of the computational proper-
ties of a model. Like in every production rule system, proper-
ties like confluence (i.e. the order of rules does not matter for
the result) and termination can be important to the soundness
of a cognitive model. While confluence may be regained by a
conflict resolution mechanism, unwanted or unexpected non-
confluence could be the result of a programming error. Con-
fluence analysis can help to detect all rules that could lead to
undesired behavior and help the modeler to check the validity
of his model.

In this paper, we present our translation of ACT-R models
to the language Constraint Handling Rules (CHR). CHR is a
declarative rule-based programming language which comes
from the field of logic programming (Frühwirth, 2009). Due
to the close relation of CHR to logic, a formalization of the
ACT-R production rule system can be derived from the trans-
lation. This closes the gap between the formalization and exe-
cution of ACT-R models simplifying analysis. There are anal-
ysis methods and tools for CHR programs, e.g. for analysis
of confluence, termination and operational equivalence which

can be applied to ACT-R models. In (Gall & Frühwirth,
2014b) we have shown the first steps towards such an analy-
sis toolbox for ACT-R by defining an abstract operational se-
mantics of its procedural system and showing soundness and
completeness of our translation with respect to the CHR very
abstract semantics (Frühwirth, 2009). This result is crucial
for lifting CHR results to ACT-R. Another benefit of our im-
plementation is its adaptability. We exemplify this by adding
refraction to the conflict resolution mechanism of ACT-R. Re-
fraction inhibits rules to fire twice on the same state.

The contributions of this paper are a concise description
of our adaptable implementation of ACT-R with CHR, the
implementation of refraction as the first of its kind in ACT-R
and its application to simplify an existing example model.

We concentrate on the symbolic parts of ACT-R in this
paper, since we want to explain the formalization of the ba-
sic production rule system with a generalized conflict resolu-
tion. Nevertheless, in our implementation we have captured
various conflict resolution mechanisms (Gall & Frühwirth,
2014a) and the declarative module with its sub-symbolic con-
cepts (Gall, 2013). The restriction is also closer to our ab-
stract semantics used for confluence analysis of ACT-R mod-
els: It is necessary to capture all possible transitions non-
deterministically to find all transitions that could inhibit con-
fluence. The abstraction can then be augmented by the details
making our results applicable to actual ACT-R implementa-
tions in a next step.

Constraint Handling Rules
First, we give an informal introduction to the programming
language Constraint Handling Rules which is the basis of our
implementation. For a detailed description of the language
we refer to (Frühwirth, 2009) and (Frühwirth, 1998). CHR
programs consist of a set of rules operating on a constraint
store comparable to the working memory in other produc-
tion systems. Given an initial constraint store, matching rules
are applied to the store to exhaustion. The data elements of
the store are (CHR) constraints which are first-order predi-
cates of the form c(t1, . . . , tn). For instance, name(robert),
age_of(robert,75) or b are constraints. The terms in the
arguments of a constraint can also contain variables that are
denoted by capital letters, e.g. X.

There are three types of rules in CHR – simplification,
propagation and simpagation:

61



simplification @ Hr <=> G | B.
propagation @ Hk ==> G | B.
simpagation @ Hk \ Hr <=> G | B.

Hr, Hk and B are conjunctions of CHR constraints, whereas
the so-called guard G consists of a conjunction of simple
built-in tests like arithmetic comparisons, syntactic equality
etc. comparable to the modifiers -, <, > in ACT-R produc-
tion rules. Guards are optional and can be omitted.

Simplification rules match the constraints on the left-hand
side of the rule with the store binding variables of the rule
with the contents of the store. If matching constraints are
found and the tests in the guard hold, the matching con-
straints are removed from the store and replaced with the
constraints in the body B. An example simplification rule is
blue, yellow <=> green modeling the mixture of the col-
ors blue and yellow. If both colors are found in the store, they
are replaced by the color green.

In contrast to simplification rules, propagation rules leave
the matching constraints in the store and add the body. Sim-
pagation rules are a mixture of both rules: The constraints
in Hk are kept in the store, whereas the constraints in Hr are
removed.

To execute CHR programs, an initial constraint store is
specified by a so-called query and then rules are applied to ex-
haustion: E.g., a program consisting of the color-mixing rule
from above would simplify the query blue, blue, yellow
to blue, green. Since there are no more yellow – blue pairs
in the store, the rule is not applicable anymore.

In implementations, CHR rules and queries are applied in
textual order: from top to bottom and from left to right. Rules
in CHR can be read as logical formulae giving programs a
declarative semantics (Frühwirth, 2009). The logical reading
of CHR programs together with analysis methods and tools
for e.g. confluence or termination makes CHR suitable for
program analysis.

The Basic Implementation of ACT-R in CHR
For an introduction of ACT-R we refer to (Anderson et al.,
2004; Anderson & Lebiere, 1998; Taatgen, Lebiere, & An-
derson, 2006). Our formalization and implementation of
ACT-R and hence the following description of the implemen-
tation of ACT-R features is based on those sources together
with the ACT-R reference manual (Bothell, n.d.).

Our implementation of ACT-R in CHR consists of two
parts: a compiler and a runtime environment. The compiler
takes a set of ACT-R production rules and translates it to CHR
rules and the runtime environment implements the features
necessary to execute the translated CHR rules according to
ACT-R.

Basic Translation of ACT-R models to CHR
This section describes the work of the compiler translating
ACT-R models to CHR rules. The description first explains
how the state of the procedural system of ACT-R can be repre-
sented in terms of constraints. Based on these considerations,
the actual translation of production rules is described.

States The state of the procedural module in ACT-R
is represented by the chunks in the buffers. We can
represent a chunk by the following constraints: a con-
straint chunk(cname,type) and for each slot-value pair of
the chunk a chunk_has_slot(cname,slot,value) con-
straint. The buffers with their contents are represented by
buffer(bname,cname). There are some assumptions on
the state, like for instance “There is at most one chunk
constraint for each chunk name”, “There is at most one
buffer constraint for each buffer”, “There is at most one
chunk_has_slot constraint for each combination of chunk
name and slot” and “Slots and types are consistent”. Those
assumptions follow from our formal description of ACT-R in
(Gall, 2013) and (Gall & Frühwirth, 2014a). The assumptions
can be checked by some simple CHR rules, if needed. They
play an important role for model analysis.

Production Rules We translate each ACT-R rule to a CHR
propagation rule, i.e. the tested constraints are left in the
store. The buffer tests on the left-hand side of an ACT-R rule
consist of a buffer name, usually a chunk type and a set of
slot-value pairs. Such a test signifies that the specified buffer
holds a chunk of the specified type with specified slot-value
pairs. The values of the slot-value pairs can also be variables
which are bound to the actual values of the slot in the buffer.
The following rule shows the translation of such tests to a set
of constraints. Actions are translated to special action con-
straints described later:
buffer(b,C), chunk(C,t), chunk_has_slot(C,s,v), ...
==> action(...), ... .

C is a fresh variable which will be bound to the name of the
chunk in the specified buffer with name b. The other con-
ditions expressed by constraints depend on the value of C,
specifying that C has to have the type t and respective val-
ues in its slots (for each slot-value pair in the original rule, a
chunk_has_slot constraint is in the head of the CHR rule).
If the value of a slot-value pair is a variable it is also translated
to a variable in the resulting rule.

The actions on the right-hand side of an ACT-R rule
are translated to constraints buffer_modification(b,CD)
for modifications, buffer_request(b,CD) for requests and
buffer_clearing(b) for clearings. In those constraints b
stands for the buffer name the action refers to and CD is a
term chunk(CName,Type,LSVP) which describes the chunk
defined by the action in the rule. If name CName or type
Type are not defined they have no value (i.e. they remain
an unbound variable). LSVP is a list of slot-value pairs taken
directly from the original rule, e.g. [(s1,v1), (s2,v2)].
For each of the three action constraints there is a rule in the
run-time environment which actually performs the action de-
scribed in the next section.

In ACT-R, the procedural module blocks as soon as a rule
has been selected to fire. Contrarily, CHR implementations
execute the right-hand side of a rule depth-first from left to
right. This leads to the effect that after the adding of the first
constraint on the right-hand side of a CHR rule, the next rule

62



might fire directly, before the other constraints are added. The
behavior of ACT-R can be modeled by two phases: a match
phase and an apply phase. Those two phases are represented
in CHR by a constraints match. The presence of this con-
straint in the store indicates that the procedural module is in
the match phase. Each ACT-R production rule can be trans-
lated to a CHR rule as follows:
buffertests \ match <=> bufferactions, match.

If all buffer tests succeed and the program is in the match
phase, i.e. a match constraint is in the store, then this con-
straint is removed prohibiting other rules from firing and the
actions are performed. At the end, a new match constraint is
added allowing other rules to fire.

Runtime Environment
The runtime environment is a framework which offers some
features needed to actually execute the rules produced by the
compiler.

Scheduler ACT-R implementations usually include a
scheduling unit which takes track of the points in simulation
time when a certain event is executed. Events in this context
are triples (T,P,C) signifying that the constraint C is added
to the store at simulation time T with priority P. In ACT-R,
priority decides which event is executed first, if they are due
at the same simulation time. The constraints added can be for
example the phase controlling constraint match or the action
of a production rule. The scheduler implements the following
interface described in table 1.

Table 1: Interface of the scheduler.
Constraint present Action
get_time(T) T is bound to current simulation time
add_event(T,P,C) event triple (T,P,C) is memorized
next_event constraint from event with smallest

time (and highest priority) is added
to the store

Production Rule Actions In the last section, the produc-
tion rule actions have been translated to some special con-
straints. In the following, we describe the rules in the runtime
environment which perform the actions specified by these
constraints. For details consult (Gall, 2013).

The rule for buffer modifications ignores any name or type
in the chunk description, since they are not allowed to be
modified (Bothell, n.d.). The symbol _ denotes an anony-
mous variable.
buffer(B,C) \ buffer_modification(B,chunk(_,_,SVP))
<=> modify_slots(C,SVP).

It adds a constraint modify_slots which takes care of the
actual modification of the individual slots in the chunk of the
specified buffer. The buffer clearing action is implemented
similarly. However, for the request action, the implementa-
tion involves a module which returns a result. The modules

have their individual constraint stores and simply have imple-
ment the following interface: They have a rule which reacts
if a constraint module_request(Request,Result,Time) is
added to their store. Request is the chunk description from
the original production rule and it is the only argument with
a value. The request action then binds the variable Result
to a chunk description with the result chunk and the variable
Time to the simulation time it takes to calculate the request.
The request action is then implemented as follows:
buffer_request(B,Request)
<=> M:module_request(Request,Result,Time),

get_time(Now),
add_event(Now+Time,P,replace_chunk(B,Result)).

In this code M is the module associated with buffer B. The
replace_chunk is a helper constraint which removes the old
chunk from the buffer and adds the result chunk to the store.
It is scheduled at the moment the request has finished, i.e. that
the result of the request is only applied after the module has
finished the request.

Modules As described before, a module can be added to the
system by writing a new Prolog module which implements a
rule reacting on a module_request constraints. Such Pro-
log modules have their own constraint store which does not
interfere with the store from the procedural system.

Implementation of Advanced Concepts
By now we have seen how ACT-R rules can be translated to
CHR and how the ACT-R framework can be built using CHR.
However, we have ignored timings and therefore scheduling.
We extend our translation scheme with those considerations
and show the ACT-R main cycle. Furthermore, the basic im-
plementation of conflict resolution is described.

Scheduling
To realize scheduling of production rule action, we translate
each ACT-R rule to two CHR rule of the following form:
buffertests \ match
<=> get_time(Now),

add_event(Now+0.05, 0,
apply_rule(rule_name, buffertests).

buffertests \ apply_rule(rule_name, buffertests)
<=> schedule actions now,

get_time(Now), add_event(Now, -10, match).

In the first rule, the match constraint is removed to end the
match phase. Since in ACT-R the procedural module block
for 50ms simulation time, the rule application is postponed
by that time by scheduling an apply_rule event 50ms from
the current time with the rule name as argument. Addition-
ally, the buffer tests, i.e. the resulting variable bindings, are
memorized in a second argument making sure that the condi-
tions still match at the rule application time.

The second rule can be applied after the scheduler has
added the corresponding apply_rule constraint and the
memorized variable bindings in the buffer test still apply.
Then the actions are scheduled at the current time with prior-
ities as defined in (Bothell, n.d.). Finally, a match constraint

63



is scheduled at the current time with low priority to make sure
that the actions are performed before the next rule can match.
Note that for requests first are only scheduled to be stated at
the current simulation time. The resulting changes are applied
after a time offset defined by the requested module.

ACT-R Main Cycle
With the scheduler and the rules modified for scheduling, the
ACT-R main cycle can be built: First, the initialization code
is executed (adding chunks, . . . ), then the initial time is set to
0 and an initial event match is added to the scheduling queue.
As soon as there are no more events in the queue, computation
is stopped.

Conflict Resolution
The current considerations have ignored the case when more
than one production rule is applicable. Like other produc-
tion rule systems, ACT-R resolves such conflicts by a certain
conflict resolution strategy. In the CHR implementation de-
scribed so far, only the first matching rule will be applied,
since CHR tries rules in textual order.

To implement conflict resolution, we exchange the first rule
of our translation scheme for production rules by the follow-
ing rule scheme:
buffertests, match
==> conflict_set(rule(rule_name, buffertests)).

Since we have a propagation rule, the match constraint stays
in the store, even if a matching rule has been found. Instead
of scheduling the rule application directly, the rule is added
to the so-called conflict set which collects all matching rules
by adding a corresponding conflict_set constraint memo-
rizing the rule and its matching variable binding.

Since the match constraint is still present afterwards, an-
other rule can match again. In the end, the constraint store is
filled with conflict_set constraints of all matching rules.
As a last rule, we remove the match constraint and start the
select phase which selects the rule being applied according to
a certain strategy: match <=> select.

In the runtime environment, we can simply add a rule
which reacts on the presence of a select constraint and
prunes the conflict set. For instance, the rule could simply se-
lect on arbitrary rule and discard all other rules without defin-
ing an order on the rules:
select, conflict_set(R1) \ conflict_set(R2) <=> true.
select, conflict_set(R)
<=> get_time(Now),

add_event(Now+0.05, 0, apply_rule(R).

The first of the two rules will remove conflict_set con-
straints repeatedly, as long as there is more than one such
constraint in the store. As soon as only one conflict_set
constraint is left, the second rule can be applied which simply
schedules the rule application event of that rule.

In practice, the conflict resolution depends on some prop-
erties of the rules. This only needs a slight adjustment of
the conflict set pruning rule. For example, production utili-
ties can be taken into account. In (Gall & Frühwirth, 2014a)

we have shown that our implementation allows to exchange
the conflict resolution mechanism by simply exchanging the
reaction on the select constraint. Since the rules for conflict
resolution are split into a separate module, it suffices to ex-
change this file to modify conflict resolution. We refer to the
original paper for details.

Implementation of Refraction
In (Young, 2003) the question is raised, if ACT-R should in-
clude rule refraction. Refraction is a concept introduced in
(McDermott & Forgy, 1977) as a possible conflict resolution
strategy for production rule systems. It inhibits production
rules from firing twice on the exact same instance.

Young argues that the lack of refraction can lead to (as he
calls it) over-programming, i.e. determining the order of rule
applications in advance. This aspect destroys declarativity
of ACT-R models, since it follows a more imperative – i.e.
step-by-step/state-by-state – thinking. This seems to be inel-
egant and leads to the problem that adjustments of one pro-
duction rule result in changing every production rule (Young,
2003). Furthermore, the question if such state-aware produc-
tion rules explain human cognition can also be raised. Al-
though it has been discussed in the community, to the best of
our knowledge, refraction has not been included in the ACT-
R reference implementation by now.

In the following, we describe how refraction can be in-
cluded with our CHR implementation and exemplify again
how easy it is to exchange fundamental parts of our im-
plementation due to the power of CHR and logic program-
ming. First of all, we memorize the instantiation of a rule
that is being applied in an instantiation constraint. The
instantiation of a rule is a list of all constraints with their
matching values. Hence, we can use a propagation rule
which reacts on the presence of an apply_rule constraint:
apply_rule(R) ==> instantiation(R).

Before the actual conflict set pruning of an arbitrary con-
flict resolution strategy (as described before), we add a rule
which removes a production rule from the conflict set if it is
present in an instantiation constraint from the store:
instantiation(R) \ conflict_set(R) <=> true.

With those two rules the basic refraction mechanism is imple-
mented. Rules should fire again on the same instantiation, if
there were changes in one of the involved parts of the instan-
tiation. In this case, if the instantiation has been “touched”
intermediately, the instantiation constraint should be re-
moved from the store to allow the rule to fire again on this
instantiation if it occurs again later. For ACT-R this is the
case if a modification or a request have changed the content
of one of the buffers of the instantiation in the meantime.
Hence, we add two rules which detect changes in buffer or
chunk_has_slot constraints:
buffer(B,C1) \ instantiation(rule(_,Hk,_))
<=> member(buffer(B,C2),Hk), C1 \== C2 | true.
chunk_has_slot(C,S,V1) \ instantiation(rule(_,Hk,_))
<=> member(chunk_has_slot(C,S,V2),Hk), V1 \== V2 |

true.

64



Those two rules react if new buffer or chunk_has_slot
constraints enter the store. The guard with the member check
tests if there is a constraint referring to the same buffer or
chunk but having different values. In this case obviously a
modification or request occurred and hence this particular in-
stantiation can be removed from the history. Note that the
use of refraction in our implementation is optional and can be
exchanged and even combined with other conflict resolution
strategies (Gall & Frühwirth, 2014a).

Evaluation
We show in an example model, how refraction can simplify
the rules of a cognitive model and make them less imperative,
i.e. defined from state to state. Our example is derived from
the semantic model from ACT-R tutorial unit 1 (The ACT-R
6.0 Tutorial, 2012). This model implements a taxonomy of
some animals and adds information about some of their prop-
erties. For example, it categorizes animals in categories like
fish and birds. Additionally, properties like swims or dan-
gerous are annotated to categories and representatives. We
shortly describe the subset of the model which is the objec-
tive of our example.

The knowledge is organized as chunks of type property
with slots object for the name of the object, e.g. shark,
attribute for an attribute of the object, e.g. dangerous or
category, and value for the value of the attribute, e.g. true
in case of the dangerous attribute of the shark or fish for cat-
egory. In the following, we concentrate on chunks with the
attribute category. The goal of the model is to judge if a cer-
tain object is member of a category. Such a goal is encoded in
a chunk of type is-member with slots object for the object
to judge, category for the category, and judgment for the
result of the query encoded by this chunk.

In a first initialization step, the model requests a chunk
from declarative memory which refers to the object the judg-
ment refers to and which has the attribute category, since it
wants to deduce the membership of the category (and not
something about other properties of the objects) (see the rule
initial-retrieve in figure 1). To judge the membership
of an object in a category, the model can verify the mem-
bership directly, if the retrieved chunk already contains the
information that the object is a member of the queried cate-
gory (rule direct-verify). Otherwise, it can chain through
the categories, i.e. take the category of the found object
and check if it is a subcategory of the queried category (rule
chain-category). Note that in our description the rule to
deduce failure has been omitted due to space reasons.

The rules are over-programmed in the sense that the judg-
ment slot always gets a value determining the state of the
derivation. For instance, in the beginning, the judgment is
expected to be nil and is then changed to pending. This pre-
vents the first rule from firing repeatedly leading to an endless
loop. The rules direct-verify and chain-category check
if the judgment is pending in the beginning. This shows the
imperative thinking behind such rules: Those two rules are

(P initial-retrieve
=goal>

ISA is-member
object =obj
category =cat
judgment nil

==>
=goal>

judgment pending
+retrieval>

ISA property
object =obj
attribute category)

(P direct-verify
=goal>

ISA is-member
object =obj
category =cat
judgment pending

=retrieval>
ISA property
object =obj
attribute category
value =cat

==>
=goal>

judgment yes)

(P chain-category
=goal>

ISA is-member object =obj1
category =cat judgment pending

=retrieval>
ISA property object =obj1
attribute category value =obj2

- value =cat
==>

=goal>
object =obj2

+retrieval>
ISA property object =obj2
attribute category)

Figure 1: Rules of the semantic model

always meant to fire after the initialization. This is ensured
by an artificial state slot in the goal chunk.

With refraction, we can simplify the rules as follows:
direct-verify and chain-category do not have to check
for the judgement slot in their conditions and the rule
initial-retrieve is not required to change the judgment
slot of the goal in its actions to pending because it never
fires again on the same goal. You can find the translation of
the model to CHR together with commented example deriva-
tions with and without refraction on our homepage1. It can
be seen that without refraction, the model ends in an infinite
loop due to the repeated application of the initialization rule.
With refraction, the model derives the correct judgments. For
the initialization rule it seems legitimate to check for a nil
judgment, since this is encodes that the goal has not yet been
achieved. It could also check for values other than yes or no
or check if the retrieval buffer is empty or does not contain a
suitable chunk for the problem. This might further increase
the declarativity of the model.

Related Work
As mentioned before, (Young, 2003) has raised the question
if production rule refraction should be included in ACT-R.
(Lebiere & Best, 2009) refer to this idea and discuss how the
lack of refraction can lead to pathological behavior of a model
like infinite looping. The authors also point out that the tradi-
tional strategies to avoid such behavior are difficult to model

1http://www.uni-ulm.de/?id=59460

65



and sometimes also lack cognitive plausibility. The paper also
mentions strategies to inhibit repeated retrieval of declarative
memory addressing another architectural problem that could
be included in our implementation of declarative memory.

ACT-R has also been implemented in Python (Stewart &
West, 2006, 2007) and Java (jACT-R, n.d.; Salvucci, n.d.).
These implementations do not concentrate on formalization
and analysis. We thank the reviewers for pointers to work on
the formalization of cognitive modeling in general (Cooper &
Fox, 1998; Howes, Vera, Lewis, & McCurdy, 2004). We plan
to investigate how those approaches relate to our work.

Conclusion
In this paper we have presented our implementation of ACT-R
in CHR including the translation of ACT-R models to CHR
rules and the embedding of the basic ACT-R framework in
CHR. We then explained the implementation of some more
specific concepts of ACT-R like conflict resolution and finally
refraction. To the best of our knowledge, our implementation
is the first to include refraction in ACT-R.

It can be seen that the fundamental ideas of ACT-R – rules,
chunks, scheduling and conflict resolution – can be captured
concisely and elegantly in CHR. By the implementation of re-
fraction and the previous work in (Gall & Frühwirth, 2014a),
we have shown the adaptability of our implementation.

Due to the conciseness and declarativity of the rules needed
to describe the ACT-R in terms of Constraint Handling Rules,
a formalization of ACT-R can be derived from our implemen-
tation. We have shown parts of this formalization in (Gall,
2013; Gall & Frühwirth, 2014a, 2014b). The formalization
together with the analysis tools of the CHR world pave the
way for an ACT-R analysis toolbox. In (Gall & Frühwirth,
2014b), we have taken the first steps towards ACT-R analysis
by formulating and abstract operational semantics which is
sound and complete with respect to the very abstract seman-
tics of CHR.

Although we have concentrated on the procedural system
of ACT-R in this particular work, we want to emphasize that
we also have implemented other components like the declar-
ative module with concepts like chunk activation. For details,
we refer to (Gall, 2013).

For the future, we want to extend our ACT-R implementa-
tion by more features known from the ACT-R world. We also
want to investigate how CHR analysis tools in detail can be
applied to ACT-R models. Additionally, we plan to extend
our abstract operational semantics with more details from
ACT-R to investigate how they relate. Finally, the transfer
of concepts, methods and ideas from the ACT-R production
rule system like activation or reinforcement learning based
conflict resolution could be included in an extension of CHR.

References
The ACT-R 6.0 tutorial. (2012). Retrieved from
http://act-r.psy.cmu.edu/actr6/units.zip

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036–1060.

Anderson, J. R., & Lebiere, C. (1998). The atomic compo-
nents of thought. Lawrence Erlbaum Associates, Inc.

Bothell, D. (n.d.). Act-r 6.0 reference manual – working
draft [Computer software manual]. Pittsburgh, Pennsylva-
nia 15213.

Cooper, R., & Fox, J. (1998). Cogent: A visual design envi-
ronment for cognitive modeling. Behavior Research Meth-
ods, Instruments, & Computers, 30(4), 553–564.

Frühwirth, T. (1998). Theory and practice of constraint han-
dling rules. The Journal of Logic Programming, 37(1–3),
95–138.

Frühwirth, T. (2009). Constraint Handling Rules. Cambridge
University Press.

Gall, D. (2013). A rule-based implementation of ACT-R
using Constraint Handling Rules. Master Thesis, Ulm Uni-
versity.

Gall, D., & Frühwirth, T. (2014a). Exchanging conflict res-
olution in an adaptable implementation of ACT-R. Theory
and Practice of Logic Programming, 14, 525–538.

Gall, D., & Frühwirth, T. (2014b). A Formal Semantics for
the Cognitive Architecture ACT-R. (Tech. Rep.).

The Homepage of jACT-R. (n.d.). Retrieved from
http://jactr.org/

Howes, A., Vera, A., Lewis, R. L., & McCurdy, M. (2004).
Cognitive constraint modeling: A formal approach to sup-
porting reasoning about behavior. In Proc. cognitive sci-
ence society (pp. 595–600).

Lebiere, C., & Best, B. J. (2009). Balancing long-term rein-
forcement and short-term inhibition. In Proceedings of the
31st annual conference of the cognitive science society (pp.
2378–2383).

McDermott, J., & Forgy, C. (1977, June). Production system
conflict resolution strategies. SIGART Bull.(63), 37–37.

Salvucci, D. (n.d.). ACT-R: The Java Simulation & De-
velopment Environment – Homepage. Retrieved from
http://cog.cs.drexel.edu/act-r/

Stewart, T. C., & West, R. L. (2006). Deconstructing ACT-R.
In Proceedings of the seventh international conference on
cognitive modeling (p. 298303).

Stewart, T. C., & West, R. L. (2007, September). Decon-
structing and reconstructing ACT-R: exploring the archi-
tectural space. Cognitive Systems Research, 8(3), 227–
236.

Taatgen, N. A., Lebiere, C., & Anderson, J. (2006). Mod-
eling paradigms in ACT-R. In Cognition and multi-agent
interaction: From cognitive modeling to social simulation.
(pp. 29–52). Cambridge University Press.

Young, R. M. (2003). Should ACT-R include production re-
fraction? In Proceedings of 10th Annual ACT-R Workshop.

66


