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Introduction
Using cognitive modeling to predict user behavior in the
human-computer interaction domain is a promising field, but
often hindered by practical problems. Especially the creation
of a mock-up of the technical system under evaluation is often
a tedious and time-consuming task. For the growing number
of HTML-based applications, the modeling toolbox ACT-CV
(Halbrügge, 2013) provides direct access to the user interface,
removing the necessity to create a mock-up before the actual
modeling can start. A down-side of this approach is that unal-
tered applications often cannot be used for fast-time simula-
tion. This paper presents a new tool that solves this problem
by capturing UI states and also the control flow of HTML ap-
plications and by transforming both into finite automata that
can be used for fast-time simulation.

Related Work
The amount of work that needs to go into the creation of a
link between a user interface (UI) and a cognitive architec-
ture should not be underestimated, a fact that has been well
put by Kieras and Santoro (2004, page 102): “Programming
the simulated device is the actual practical bottleneck”. There
are solutions to this, but they often require instrumented ap-
plications (e.g., Urbas et al., 2006; Büttner, 2010). Other ap-
proaches like SegMan (Ritter, Van Rooy, St. Amant, & Simp-
son, 2006) allow unaltered applications, but work on a pixel-
by-pixel basis, forcing the modeler to re-create the symbolic
information from its lowest-level graphical equivalent.

ACT-CV
The cognitive modeling toolbox ACT-CV has started as a vi-
sual device for ACT-R (Anderson et al., 2004) that uses com-
puter vision (hence ACT-CV) for the creation of symbolic
representations of a visual scene from a video camera or a
computer screen capture. HTML support was added in ver-
sion 2 (Halbrügge, 2013), building ACT-R’s visicon (visual
icon) directly from the textual and clickable elements in the
browser window and applying ACT-R’s mouse clicks to them.

While direct access to real-world user interfaces eliminates
the tedious need to create mock-ups, some inconveniences re-
main: Fast-time simulation is impossible, especially in the
presence of graphical transitions and animations that take
fixed amounts of time. It is also very hard to parallelize the
model runs during batch processing as every model would
need at least its own browser instance. In the case of state-
ful user interfaces, extra checks would be necessary to ensure
that the model sessions do not interfere with each other.

Creating Finite Automata from Dynamic Web Pages
When we bring to our mind that ACT-R’s visual module only
uses the geometry, color, and (textual) content of a screen el-
ement, it should be obvious that creating and holding a com-
plete browser instance to create this small amount of infor-
mation is highly inefficient. How can we improve this?

The approach taken in this paper is to keep a history of the
observed visicons in their reduced form, and taken together
with the actions taken by the model, using this history to cre-
ate a computational representation of the system that com-
pletely replaces the original browser content. As a cognitive
model can only “see” through ACT-R’s visicon, the removal
of the actual browser is transparent to it.

Formalization The state s ∈ S of the user interface is the
set of currently visible elements as represented in ACT-R’s
visicon. The visicon is a table of chunks of type visual-object
that contain their positions, dimensions, colors, and symbolic
values. For reasons of simplicity, we consider every visicon
entry as a possible action a ∈ A. An action is executed by in-
teracting (i.e., clicking or tapping) with its corresponding UI
element and usually leads to a new UI state. We are assuming
discrete time, i.e., every transition to a new state denotes a
new time step.

How can we represent the UI logic? If the UI had Markov
properties, i.e., no hidden states, it could be captured by a
deterministic transition function δ(S,A) 7→ S. This is usually
not the case, though. Stateful interfaces are the rule rather
than the exception; examples on the web are shopping carts,
stored billing information, or personalized news and ads with
the help of browser cookies.

In order to support hidden states, ACT-CV uses a deter-
ministic finite partially observable Markov decision process
(POMDP) representation for the UI logic. If a pair of state
and action does not lead deterministically to another state, we
go back in history until we can establish a deterministic tran-
sition function again, e.g., δ(S,A,S,A) 7→ S. Implementation-
wise, we only store the part of the history that is needed to
reproduce the observed behavior of the UI.1 During the learn-
ing phase, the complete history needs to be kept in order to
be able to adapt to newly discovered hidden states.

Exploration of the User Interface Finding an optimal so-
lution to a POMDP problem is known to be NP-hard (i.e., not

1The flexible history approach presented here is not always opti-
mal, e.g., because states with self-transitions can fill up the history
without adding any information. A better, but more complex solu-
tion would be Looping Suffix Trees (Holmes & Isbell Jr, 2006).
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easily computable for non-trivial cases, Kaelbling, Littman,
& Moore, 1996). Fortunately, we are not in need of opti-
mal solutions, often not even complete ones. The part of the
state space that is actually visited by the cognitive model un-
der investigation is most of the time much smaller than the
complete state space of the application.

If the cognitive model is deterministic, we can build the UI
representation from the observation history of a single com-
plete model run. Non-deterministic models may visit much
more states than deterministic ones. Due to this, we need to
explore the application beforehand and independently of the
model. ACT-CV procides a simple exploration mechanism
that is inspired by the RMax algorithm (Brafman & Tennen-
holtz, 2003) for this situation.

Application Example and Results ACT-CV has been used
during a modeling attempt targeted at a HTML-based home
assistance system (Halbrügge & Engelbrecht, 2014). The
work comprised an analysis of sensitivity towards global
ACT-R parameters that needed hundreds of model runs. If
this analysis had to be done in real-time, it would have needed
several weeks to complete. With the help of ACT-CV and
the state machine approach introduced above, the analysis
could be run approximately 150 times faster on a common-
place desktop computer and finished within a few hours.

Open Issues While the automaton approach has worked
very well in the example given above, issues remain. First,
graphical transitions like fade-ins make it hard to determine
when human users can actually see and act upon different el-
ements on the screen. As ACT-CV does not capture the fade-
in, some timing information may get lost. Secondly, page
scrolling behavior has not yet been modeled using the au-
tomaton approach. Scrolling can lead to many different UI
states and may need extra treatment. And finally, if the UI al-
lows data entry, e.g., in text fields, this instantly blows up the
amount of possible states of the application. Free exploration
cannot be used in this case.

Conclusion
Especially when using cognitive modeling to capture rare
events like errors, it is often necessary to execute many model
runs. In this case, it is very important to be able to run the
model in fast-time simulation. In the case of HTML-based
interfaces, this is only possible if a non-HTML mock-up is
available. While some modeling tools (e.g., CogTool, John,
Prevas, Salvucci, & Koedinger, 2004) have import functions
for static HTML content, dynamic applications were not yet
covered. ACT-CV closes this gap by allowing to extract the
information on the screen that is needed by ACT-R’s visual
module from the rendered browser content. The application
logic is transformed into a finite state machine by the means
of guided or free exploration using a POMDP approach.

ACT-CV is freely available for download at http://act-
cv.sourceforge.net.
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