SIMCog-JS: Simplified Interfacing for Modeling Cognition - JavaScript

Tim Halverson (thalverson@gmail.com)
Oregon Research in Cognitive Applications, LLC
Oregon City, OR 97045 USA

Brad Reynolds (reynolds.157 @wright.edu)
College of Engineering and Computer Science, Wright State University
Dayton, OH 45435 USA

Leslie Blaha (leslie.blaha @us.af.mil)
711th Human Performance Wing, Air Force Research Laboratory
WPAFB, OH 45433 USA

Abstract

A continuing hurdle in the cognitive modeling of human-
computer interaction is the difficulty with allowing models
to interact with the same interfaces as the user. Multiple at-
tempts have been made to add this functionality (e.g., Hope,
Schoelles, & Gray, 2014) in limited domains. This paper
presents a solution allowing models to interact with web
browser-based software, while requiring little modification to
the task code. Simplified Interfacing for Modeling Cognition
- JavaScript (SIMCog-JS) allows the modeler to specify how
elements in the interface are translated into ACT-R chunks,
allows keyboard and mouse interaction with JavaScript code,
and allows sending ACT-R commands from the external soft-
ware (e.g., to add instructions). The benefits, drawbacks, and
future functionality of SIMCog-JS are discussed.

Keywords: Cognitive Architectures; Task Interface; ACT-R;
WebSockets; JSON; HTML; JavaScript; D3

Introduction

A substantial challenge with modeling human cognition is the
presentation of task environments to the simulated human.
Software re-implementation provides little scientific reward,
yet modelers face this burden every time they utilize a new
or modified task. The situation is further complicated if a
modeler is studying human-computer interaction (HCI) with
complex software in which users are engaging in ongoing, dy-
namic, and interleaved or multi-tasking behaviors. Because
the focus of cognitive modeling in HCI is often either explain-
ing or predicting performance differences between alternative
interfaces, substantial research time is spent re-implementing
multiple, complex interfaces; this effort is further multiplied
if multiple cognitive architectures are used.

Although re-implementation within a modeling architec-
ture framework can allow maximum control by the modeler,
it introduces additional challenges: (a) Re-implementation
increases the likelihood that the fidelity of the simulation is
degraded by an imperfect porting of the user interface or task
dynamics. (b) Iterative changes to the original software/task
require additional efforts to integrate these changes into the
model’s task environment. (c) Task-simulation environments
for cognitive architectures are sometimes written in program-
ming languages not commonly used for building HCI inter-
faces (e.g., ACT-R uses Lisp; Anderson et al., 2004) and of-
ten provide limited facilities for building the task simulations.

39

Thus, the process of re-implementation forces a trade-off be-
tween task fidelity and time savings. An alternative to re-
implementation is to allow a model to communicate directly
with a user interface that is external to the cognitive architec-
ture. Previous research has attempted to solve this challenge,
although in limited domains. Computer vision (CV) has been
used to automatically extract relevant visual features from an
existing computer interface (e.g., Halbriigge, 2013; St Amant,
Riedl, Ritter, & Reifers, 2005). While CV solutions remove
the burden of “translating” the interface to symbols under-
stood by the architecture, they also reduce the control the
modeler has on how the visual interfaces are specified. Ad-
ditional control requires the modeler to customize the CV al-
gorithms or specify screen element “templates” at the pixel
level. Other solutions provide the ability for models to act
within specialized environments, like games (e.g., Veksler,
2009) or robotics (e.g., Kennedy, Bugajska, Adams, Schultz,
& Trafton, 2008). These solutions are incredibly useful but
are limited to their specialized environments. Still other solu-
tions provide a more general framework for interfacing mod-
els with external software by using interprocess communi-
cation protocols available in many programming languages
(e.g., Biittner, 2010; Hope et al., 2014). The solution pre-
sented herein falls into this final category.

We present a solution to the challenge of communica-
tion between external task environments and cognitive ar-
chitectures: Simplified Interfacing for Modeling Cognition
- JavaScript (SIMCog-JS). Our approach supports commu-
nication between Java ACT-R (Salvucci, 2013) and HTML-
/JavaScript-based software in a user-friendly manner. In the
remainder of this article, we specify some design require-
ments, describe the functionality provided by SIMCog-JS,
and provide an example of SIMCog-JS applied to a dynamic,
multitasking experiment environment.

SIMCog-JS Design Requirements

SIMCog-JS is a technology that allows cognitive modelers
to specify how visual information is extracted from external
software, passes that information to ACT-R, and passes key-
board and mouse events back to the external software. The
primary motivation for SIMCog-JS is rooted in a desire to

Modified MATB

ACT-R Representation

Figure 1: The browser-based modified Multi-Attribute Task
Battery (mMATB) as it would appear to a human participant
(left) and a representation of the ACT-R visicon (right).

apply cognitive architectures to dynamic, multitasking ex-
periments, such as training simulations or naturalistic web-
browsing. We desire a flexible system allowing interaction
between multiple cognitive modeling formalisms and exist-
ing software/HCI environments.

SIMCog-JS attempts to minimize the modeler’s burden in
multiple ways. First, SIMCog-JS requires minimal modi-
fication of existing task code, although it does require that
the modeler have access to the JavaScript task code. Sec-
ond, SIMCog-JS includes an extension to Java ACT-R that
replaces Java ACT-R task code and requires no modifications
for a wide variety of tasks. Third, SIMCog-JS provides a
user-friendly, flexible syntax for specifying which visual el-
ements should be passed to ACT-R, when those elements
should be updated in ACT-R, and how they should be per-
ceived (i.e., slot values).

In order to provide this functionality, SIMCog-JS had three
critical design requirements:

1. SIMCog-JS must use standard software protocols for com-
munication between models and experimental software.
Integrating model interactions with the task makes minimal
modifications to the experimental code, minimizing inter-
ference with human data collection or natural behaviors.

. Model execution occurs in real time.'

2.

We note that as our initial target task environment, the
modified Multi-Attribute Task Battery (mMATB), executes in
a web-browser and the modeling formalism, Java ACT-R, is
written in Java, we were required to implement a new solution
to facilitate interaction between cognitive models and a task
environment. Hope et al. (2014) introduced a similar solution
for interfacing Lisp ACT-R with stand-alone software. How-
ever, that published solution does not support either Java or
JavaScript. Our solution took motivation from Hope et al.’s
work.

The mMATB Task Environment

We apply SIMCog-JS to a dynamic, multitasking environ-
ment, mMATB (Cline, Arendt, Geiselman, & Blaha, 2014).

! As our target software does not support synchronized execution
with external software. This is not a constraint unique to our target
software, as web browsers (and most software) do not allow external
synchronization.

40

This is a generalized version of the MATB developed to
assess multitasking in pilot-like environments (Arnegard &
Comstock, 1991); the modifications in this environment make
similar cognitive demands on the participants, but the tasks
are less pilot-specific in nature. Our browser-based imple-
mentation is written with the D3 JavaScript library (Bostock,
Ogievetsky, & Heer, 2011) integrated with a Python django
database. Participants interact with the environment through
keyboard button presses and mouse clicks and movements.

The mMATB, shown in the left panel of Figure 1, entails
four separate tasks, which we summarize clockwise from the
upper left. The upper left quadrant is a Monitoring Task, con-
sisting of a set of sliders and two color indicator blocks. The
participant’s task is to provide the appropriate button press
(F1-F6, labeled on each indicator/slider) if a parameter is out
of its normal state. For the sliders, this means moving above
or below £1 notch from the center. For the indicators, the
normally green (black) might turn black (red).

A Tracking Task is contained in the upper right quadrant,
wherein three colored circles move continuously along indi-
vidual ellipsoid trajectories. At any time, one of the circles
may turn red, indicating it is the object to be tracked by the
participant. The participant tracks the target by mousing to
the target, clicking on it, and then following it with the mouse,
until the next target object is indicated with a color change.

The lower right quadrant contains a Resource Management
Task. Two resource tanks are schematically illustrated, to-
gether with representations of fuel sources, reserve tanks, and
gated connections (each numbered 1-8) between all tanks.
The participant’s task is to maintain the resource levels within
a range specified by bars on the sides of the tanks. The on/off
states of the gates are controlled with number pad key presses.
The participant can control the gates with any strategy of
choice to maintain the resource levels.

Finally, the lower left quadrant contains a Communications
Task. The display shows four channels (Intl, Int2, Opsl,
Ops2) together with the current channel values; the topmost
line gives a target channel and value. If a red cued target
appears in the top box, the participant uses the up/down ar-
row keys to select the cued channel and the right/left arrow
keys to adjust the channel value to the new cued value. The
enter key submits the corrected channel, which changes the
topmost cue box to white until the next channel cue appears.

Cognitive modeling of mMATB performance aims to cap-
ture behavioral impacts of changes in workload, operator
stress levels, or fatigue levels and to characterize the high-
level strategies engaged during continuous multitasking.

SIMCog-JS Software Architecture

SIMCog-JS uses a client-server software architecture. The
server exists within Java ACT-R (Salvucci, 2013) as a
“generic task.”” This generic task is populated with
environment-specific information as the server receives mes-
sages from a client describing the current state of a task in-
terface. The server dynamically changes the ACT-R envi-

ronment based on the messages received from the client and
sends messages to the client describing ACT-R’s actions.

The client is built in JavaScript, allowing it to run within all
modern web browsers. The client runs alongside the browser-
based task translating the task interface for the server and pro-
cessing interactions from ACT-R. The client is integrated into
existing code by referencing the client script in the task’s pri-
mary web page (e.g., index.hmtl). Further, the modeler spec-
ifies three things within the client: (a) a list of visual chunks
to be represented in ACT-R, (b) a list of ACT-R commands
for the model, and (c) handlers for interactions received from
the task.? Once these are in place, the system is ready for use.

The client and server communicate via WebSockets and
JavaScript Object Notation-Remote Procedure Call (JSON-
RPC). WebSockets (Fette & Melnikov, 2011) allow reliable,
simultaneous connections between the client and server.’
Once connected, the client and server use JSON-RPC (JSON-
RPC Working Group, 2010) to send information. JSON-RPC
is a standardized protocol for sending messages based on the
JSON standard. Both the WebSocket and JSON-RPC proto-
cols are standards that have been implemented in many pro-
gramming languages, allowing SIMCog to be easily extended
to task interfaces and cognitive modeling formalisms in other
programming languages through the use of these standard
protocols and reuse of the SIMCog-JS’s messaging specifi-
cation. WebSockets and JSON are native to JavaScript, but
requires additional libraries for Java.

Figure 2 shows the flow of information between the
browser task environment (i.e., client), the server, and ACT-
R. After Java ACT-R and the client are configured and run-
ning, the client sends all information about the interface to
the server at the start of the task, along with any initial ACT-R
commands. As keyboard and mouse events are generated by
ACT-R, these actions are passed to the client to affect the in-
terface. Details on how to configure the client and server can
be found with the SIMCog-JS Software Design Document
included in SIMCog-JS distribution.* The following section
provides details on how this communication takes place be-
tween the client and ACT-R.

Communicating through SIMCog-JS

SIMCog-JS allows the modeler to specify how interface el-
ements in software will be represented in ACT-R, to send
ACT-R commands from the task client to Java ACT-R, and
to determine how the task client will respond to keypresses
and cursor movements made by the model. The following
sections describe how these three facilities are used.

2 As discussed in Keypress and Mouse Events section below, de-
fault keypress and mouse click handlers are provided for the mod-
eler’s convenience.

3The client and server may be run on separate computers and
over the internet. However, doing so may introduce additional lag
that could reduce the fidelity of the simulation.

4The SIMCog-JS distribution can be downloaded from:
http://sai.mindmodeling.org/simcog/

41

Browser Sarrer
Task

Send initial visual objects

ACT-R

Model set up;

server running

Interaction by model

Launch task

Add initial objects

to ACT-R visicon Screen

initialization

Confirm all initial objects
added to visicon

Send visual object
updates (polling and
events)

Send visicon updates

Screen

for each item sent updates

Send interaction

Model information

interaction
with Task

Figure 2: Information flow through SIMCog-JS. The in-
formation events start with the modeler initiating the Java
ACT-R model and then launching the browser-based task.
SIMCog-JS then connects the two environments. The vertical
dimension captures time flowing from top to bottom.

Update task environment

Specifying Visual Chunks

The left side of Figure 1 shows the visual interface for
mMATB task as presented to the human participant in the
web browser. The right side of Figure 1 shows a visual rep-
resentation of ACT-R’s visicon, as specified by the modeler
and displayed by the SIMCog-JS server. The modeler spec-
ifies which web-browser elements become visual chunks in
ACT-R, how those elements will be represented in ACT-R,
and when those elements will be updated. SIMCog-JS does
not send all interface elements to ACT-R; doing so could un-
necessarily complicate the modeling. The modeler may have
observational data or theoretical reasons for hypothesizing
that some interface elements are completely ignored by users.
For example, a uniform background frame may have no im-
pact on performance, assuming adequate contrast between the
background and foreground elements. Therefore, the modeler
must specify the set of interface elements that become visual
chunks in ACT-R.

The modeler must specify the interface element id and the
element’s shape type. The object’s coordinates, width, height,
color, and text (if applicable) are automatically extracted from
the task interface using JavaScript DOM function calls and
jQuery-dependent CSS specificity computations.’ The syntax
for specifying visual objects is:®

S All attributes can be specified manually. See the Design Doc-
ument at http://sai.mindmodeling.org/simcog/ for more information
and useful links to the libraries utilized.

SAll syntax descriptions follow the same convention. Angle
brackets are used to indicate a value that must be specified by
the modeler. Values enclosed in quotation marks indicate that the
value is a string. For example, id:”<unique_name>" indicates that
unique_name should be replaced by a string that is the value of the
id, like id :”foo”. Alternative values are separated by ”|”.

{id:”<unique_name >", type:"<valid_type >"}

The id uniquely identifies the object. If the interface el-
ement has an explicitly labeled id in the document-object
model (DOM; e.g., <div id="top_nav”>), that string can be
used as the SIMCog-JS id. If an object does not have a
unique ID, the id can be specified with two attributes, name
and domLocation. The name value is a string that must be
unique to the object. It is helpful to make the name mean-
ingful. A domLocation value is the node of the object located
within the DOM tree. This node can be found in multiple
ways. One way is to identify the relation to another named
object within the DOM tree. Another is to locate the object in
the DOM tree relative to the root (i.e., document). Syntax for
these methods are:

{id:{domLocation:document. getElementById (
"<element_id >").nextElementSibling ,
name:”<unique_name >"}, ...}

{id:{domLocation:document. body .
lastElementChild ,

name:”<unique_name >"}, ...}

The type is a string that determines how the ob-
ject will be represented within ACT-R. A screen ob-
ject must be one of nine types: “Line”, ”Cross”,
”Label”, ”Oval”, ”OvalOutline”, ”” OvalOutlineFill ”, ”Rectangle”,
”RectangleOutline”, or ” RectangleOutlineFill ”. The first three
types are “native” to Java ACT-R;’ the remaining items are
custom task components added by the authors. The type
of an object is represented in the visual chunk’s "isa” at-
tribute (e.g., ” OvalOutlineFill ” has an attribute of ”isa oval”).
Additionally, if the shape is specified with two colors (e.g.,
” OvalOutlineFill ” has a fill and outline color), then SIMCog-
JS adds a borderColor chunk slot that contains the value of the
border’s color and the standard ACT-R color slot contains the
value of the fill color. The coordinates, dimensions, and col-
ors of objects are determined differently for different object
types. If an object is declared with the wrong type, it is likely
that the object will be misrepresented in ACT-R.

The modeler may also specify when changes to interface
elements are sent to ACT-R. The default is to update when-
ever the element changes using DOM Mutation Observers.
This event-based functionality is most useful when one or
more attributes of the interface element changes infrequently.
The modeler may also specify that updates occur at a config-
urable, regular interval (e.g., polling). This polling function-
ality is most useful when the attributes of objects are rapidly
changing. In such cases, the polling method can substantially
decrease the number of messages to the server, decreasing
computational demands. Specifying polling-based changes
is done by adding a change attribute with the value ”poll” to
the element declaration. Finally, an object can be declared as
static. Static elements are never updated. The modeler may
specify an object as static by adding a change attribute with the

"Note that ”Button”s are not supported. As discussed later, any
type of object can be clickable.

42

value ” static ” to the element declaration. Syntax for change
declarations is:

{..., change:”evt”|” poll”|” static”}

In addition to specifying when updates for an object are
sent, the modeler may specify which visual properties are up-
dated. By default, all properties are updated. Listing only
those properties that will change can improve software per-
formance. For example, a light may only change color but
not move, or tracking reticles may only change coordinates
but not colors. The list of properties that will be updated
are appended to the value given to the change attribute. If no
such list is given, all properties are updated. Valid attributes
are ”’x”, 7y”, “height”, "width”, ”color”, “secondaryColor”, and
” stringVal 7. Only labels have ” stringVal ” attributes. Syntax
of these expanded change declarations are:

{..., change:[”<attribute_name >7,
”additional_attribute_name >, ...]}
{..., change:[” poll”, "<attribute_name >”,

”additional _attribute_name >,

1}

It is also possible to add objects to the ACT-R task envi-
ronment that are not relevant to the model but are useful for
the modeler (i.e., for debugging the visual interface). This is
done using “task-irrelevant” objects. Task-irrelevant objects
never appear in the model’s visicon. For example, a task-
irrelevant object may be used as a background to make ob-
jects easier to see for the modeler. There are four possible
task-irrelevant objects: Cross, Label, Line, and Rectangle.
Task-irrelevant objects are not updated throughout the task.
All objects default to being task-relevant. To declare an ob-
ject as task-irrelevant, the attribute taskRelevant is added to an
object declaration with a value of false. The syntax for this
option is:

(...

taskRelevant: true | false}

Example Specifications from mMATB This section pro-
vides examples of how interface elements in the mMATB
task, shown in Figure 1, are specified. The examples start
with simple specifications and progress to the more complex.

Perhaps the simplest interface elements in mMATB are the
background color panels underlying all four quadrants. They
never change (i.e., are static), are filled with a single color
(" steel blue™), and are rectangular. If one hypothesizes that
these background colors are ignored by the users, these el-
ements can be declared as task-irrelevant. Alternatively, the
cognitive model could simply ignore these elements, or the
modeler could choose to exclude these elements. Making
them task-irrelevant will improve software performance ever
so slightly. Including them in the interface specification will
make the interface in ACT-R more readable. Although the in-
terface element is simple, it is not uncommon for HTML ids
to be missing from background elements, which complicates
the id for these elements. In this example, the domLocation
value is used to determine the id based on the modeler’s
knowledge of the location of these elements in the DOM tree.

{type:” Rectangle”,
id:{name:”svg0”,
domLocation:d3.

selectAll ("svg”)[0][0]. firstChild },
change:” static”,
taskRelevant: false}

The Monitoring Task color indicator blocks (upper left
quadrant) provide a straightforward example for displaying
event-based task elements. The following example is the
specification of the green color indicator block; the specifi-
cation of the red block is similar. The id of this rectangular
element is known, monitor_button_ 0. The only property that
changes is the color and so the only value assigned to the
change attribute is color. The changes are infrequent, nor-
mally changing only a few times per second, so the change
attribute is given the value of ”evt”. Note that "evt” is the
default and is not required in the declaration.

{type:” Rectangle”,

id :” monitor_button_0",
change:[”evt”, “color”]}

Label interface elements are unique in that they con-
tain text that can be updated. The mMATB Communica-
tions Task’s channel values provide examples of changing la-
bels. As with the indicator blocks, the ids are known, like
”comm_channel_1_frequency” in the example below. However
the text of the label changes. In the example below, the change
attribute is labeled as event-based (e.g., “evt”) because the
values rarely change, and only the text of the label is marked
for change with ” stringval ”.

{type:” Label”,

id:”comm_channel_1_frequency”,
change:[”evt”,”stringVal”]}

The most dynamic elements in the mMATB interface are
the colored circles in the Tracking Task. Each oval moves
continuously along a path using the D3 animation library. The
constant motion produces a lot of events; this could generate
a lot of network traffic and decrease software performance.
Therefore, these elements are specified with the ”poll” value
for the change attribute. The location (”x” and ”y”) and " color”
change, and so all three values are listed in the change at-
tribute. The final attribute of the example specification given
below is clickable ; this attribute will be described in the next
section.

{type:”OvalOutlineFill”,

id:” track_circle_0",

change:[” poll”,”x”,”

clickAble: true}

LI T]

y”,”color”],

Keypress and Mouse Events

To complete the interaction loop, actions taken by the model
are transmitted to the task environment. There are three types
of interaction currently supported by SIMCog-JS: key press,
cursor move, and mouse click. The server sends all inter-
actions to the client; the modeler has full control of how to
handle (or ignore) events.

43

The simplest of the three interactions is key press. Key
press interactions are handled automatically by the system.
This is done by mapping ACT-R keycodes to JavaScript key-
codes and dispatching a keydown event to the task. Currently
only keydown events are supported; the modeler may modify
the client code to support keyup and keypress events.

When a click is performed, a message is sent to the client
containing the location of the mouse and the event type
(mouseClick). While mouse coordinates may be enough for
many tasks, more information is provided, for example, to
deal with the asynchronous nature of the system or facili-
tate a deeper analysis. An example from the mMATB task
is when the model clicks on circles in the tracking task that
are moving quickly; the circle could move a couple of pixels
out from under the cursor before the click event reaches the
client. To handle such circumstances, objects can be declared
as clickable . Anytime a click is performed by the model, the
server determines if the click was performed within any of the
clickable objects. If it is determined that one or more objects
were clicked, the message to the client will also include the
unique IDs of the items clicked, along with the location, type,
and ID of every clickable object. This information allows for
cases where the unique identifier is needed to click an object
within the task and even more complex cases where specific
information and computation is desired.

To declare a visual chunk as clickable, add the clickable
attribute to an object’s specification and set it to true.

(...,

The client automatically handles clicks by dispatching a
JavaScript mouse click event. If a clickable object was
clicked, the client dispatches a click event for that element.
Otherwise, the client finds the element at the location of the
click and simulates the click there.

For mouse movements, JavaScript does not allow control
of the cursor in web browsers. Such control is not allowed by
code in web browsers for security and usability reasons. To
simulate a model’s mouse movements in the task, SIMCog-
JS generates mouse movement messages for the client. This
approach offers both reliability and speed without introducing
external software systems.

‘When the model moves its simulated mouse, a mouseMove
message is sent to the client that contains the location of the
model’s simulated cursor. With this information, the mod-
eler can record the simulated mouse movements similarly to
how human mouse movement data are recorded. To do so,
the modeler will likely need to modify the client code. For
example, in mMATB the cursor-recording code looks like:

clickable : true}

ws.onmessage function (evt) {
// Called when server message received
var serverMessage = JSON.parse(evt.data);

else if(serverMessage.Command == “mouseMove”){
track_chart.mouseLocation (

{x: modellnteraction . mouseX,
y: modellnteraction .mouseY });

1

Sending ACT-R Commands

SIMCog-JS supports sending model commands from the task
to the model. Doing so is straightforward and takes advantage
of existing Java ACT-R methods for executing ACT-R com-
mands. The modeler adds commands to a list in the client
code that is sent to the server at the start of execution. For ex-
ample, to represent the Resource Management Task instruc-
tions to maintain the resource level within a target range, the
modeler may specify:

[’(add—dm (resourceTask isa goal

minLevel 2000 maxLevel 3000))”,
”(goal—focus resourceTask)”]

Conclusion and Future Work

SIMCog-JS is a system that allows cognitive models to
interact with external software, minimizing the task re-
implementation burden on the modeler. The system currently
facilitates communication between Java ACT-R and HTM-
L/JavaScript. In addition to describing the architecture of
SIMCog-JS, this paper reported on using SIMCog-JS to (a)
specify visual interface elements for use by ACT-R and how
those interface specifications can be customized, (b) integrate
ACT-R responses into JavaScript software, and (c) execute
ACT-R commands from the task interface. The strengths
of SIMCog-JS are the easy specification of visual objects
and interactions with minimal task-code modifications and
the seamless interaction between models and browser-based
tasks. The modeler need only specify the identity and shape
for visual objects to reach ACT-R.

Development is ongoing to improve and extend the func-
tionality of SIMCog-JS. A mid-term goal is to add syn-
chronous execution modes, where the task and model use
the same simulation clock, relaxing design requirement 3
without negatively impacting real-time execution. Additional
planned features include audio event specification and sup-
port for multiple cognitive modeling formalisms, like EPIC
architecture (Kieras & Meyer, 1997) and Python-based math-
ematical models.

By harnessing standard programming protocols and lan-
guages, the SIMCog approach can lighten the modeler’s bur-
den while broadening the environments in which computa-
tional cognitive models operate. Because SIMCog-JS can
operate in an environment with facilities for complex data vi-
sualization (e.g., D3), we will be pushed to enhance ACT-
R’s functionality. In the future SIMCog-JS could be inte-
grated with an artificial vision system to, for example, au-
tomatically determine object shape; this combined approach
could, in fact, bolster both candidate solutions to the task re-
implementation challenge.

Acknowledgments

This research was supported AFOSR. Distribution A: Ap-
proved for public release; distribution unlimited. 88ABW
Cleared 12/16/2014; 88ABW-2014-5938.

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004, October). An integrated
theory of the mind. Psychological Review, 111(4),
1036-1060.

Arnegard, R. J., & Comstock, J. R. (1991, May). Multi-
attribute task battery: Applications in pilot workload
and strategic behavior research. In 6th international
symposium on aviation psychology (pp. 1118-1123).
Columbus, Ohio.

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: Data
driven documents. IEEE Transactions on Visualization
and Computer Graphics, 2301-2309.

Biittner, P. (2010). “Hello Java!” Linking ACT-R 6 with a
Java simulation. In D. D. Salvucci & G. Gunzelmann
(Eds.), International conference on cognitive modeling
(pp- 289-290). Philadelphia, PA.

Cline, J., Arendt, D. L., Geiselman, E. E., & Blaha, L. M.
(2014, May). Web-based implementation of the modi-
fied multi-attribute task battery. In 4th annual midwest-
ern cognitive science conference. Dayton, Ohio.

Fette, 1., & Melnikov, A. (2011, November). The WebSocket
Protocol (Tech. Rep. No. RCF 6455). Internet Engi-
neering Task Force.

Halbriigge, M. (2013). ACT-CV: Bridging the Gap between
Cognitive Models and the Outer World. In E. Branden-
burg, L. Doria, A. Gross, T. Giintzler, & H. Smieszek
(Eds.), Berliner werk- statt mensch-maschine-systeme
(pp- 205-210). Berlin.

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014). Sim-
plifying the interaction between cognitive models and
task environments with the json network interface. Be-
havior Research Methods, 46, 1007-1012.

JSON-RPC Working Group. (2010, March). JSON-RPC 2.0
Specification. http://www.jsonrpc.org/specification/.

Kennedy, W. G., Bugajska, M. D., Adams, W., Schultz, A. C.,
& Trafton, J. G. (2008). Incorporating Mental Sim-
ulation for a More Effective Robotic Teammate. In
Conference on artificial intelligence (pp. 1300-1305).
Chicago, IL.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12(4), 391-438.

Salvucci, D. D. (2013, August).
Java Simulation & Development
http://cog.cs.drexel.edu/act-r/index.html.

St Amant, R., Riedl, M. O., Ritter, F. E., & Reifers, A. L.
(2005). Image Processing in Cognitive Models with
SegMan. In Human-computer interaction international
(pp- 1869:1-1869:19).

Veksler, V. D. (2009). Second Life as a Simulation En-
vironment: Rich, high-fidelity world, minus the has-
sles. In International conference on cognitive model-
ing. Manchester, United Kingdom.

ACT-R: The
Environment.

