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Abstract 
We discuss a method for creating models of expert cognition 
and behavior in naturalistic environments.  The method 
consists of video annotation and iterative model tracing, as 
well as a commitment to making all data and components of 
the model available for independent validation.  

Keywords: Cognitive modeling; macro-cognition; expertise; 
expert cognition; methodology.  

Introduction 
Cognitive modeling draws largely upon theories and 
methods from psychology and artificial intelligence. While 
the insights and approaches developed in these fields are 
leveraged to great positive effect by cognitive modelers, 
there are limitations that arise from an overly strict 
adherence to the practices of these sister fields. Among 
these is the difficulty of modeling behavior and cognition in 
naturalistic environments by using laboratory-based 
methods. The reasons for this issue, and the approach we are 
using to address it are discussed below.  

Laboratory Methods and Macro-cognition 
Studying behavior and cognition in real-life scenarios is 

difficult. Environments can be chaotic, behavior can be 
inconsistent, and there can be an overwhelming number of 
variables involved. Laboratory experimentation is largely 
aimed at limiting this complexity and helping researchers to 
isolate and examine more precisely the factors they are 
interested in. This is achieved through simplification of the 
task environment, repetition of tasks, and the averaging of 
data across trials and participants.  

This methodology has proven powerful and generative, 
but questions have been raised about the difficulties of 
“scaling up” findings from laboratory experimentation to 
explain cognition as it occurs in the real world (Klein et al., 
2003). These limitations are particularly relevant in the 
study of expert behavior and cognition. In natural 
environments, expert behavior is dynamic, adaptive, and 
often idiosyncratic. These are important elements that are 
often obscured by traditional laboratory paradigms.  

As an example, consider the difference between the study 
of chess players as it traditionally occurs in laboratory 
paradigms and the observation of a chess master playing a 
game at home. In lab studies, players may be presented with 
chess positions and asked to recall as many pieces as 

possible, after which reaction times and error rates can be 
measured. Alternatively, they may be shown a position and 
asked to make a single move, then asked how many 
candidate moves were considered, or to speak aloud while 
deciding what move to play. This is a form of protocol 
analysis commonly used to supplement experimental work 
(Ericsson, 2006).  

Using the above methods, the motivation is often to 
examine how many elements can be “chunked” into a single 
memory representation, or to examine how deeply or 
broadly a player searches in choosing their next move. This 
is a reductive approach that splits the task performance into 
pieces in order to isolate and better understand those pieces, 
with the (possible) intention of later combining the 
components into a more holistic picture of the underlying 
cognition. This subsequent recombination can be directed in 
two ways: either to form a more complete picture of chess 
cognition per se, or to inform a broader theory of cognitive 
functions, such as memory encoding or pattern recognition, 
which in the general case are not specifically tethered to 
chess. Part of our motivation in creating the method 
described here is skepticism about whether this process of 
division and subsequent recombination can lead to an 
understanding of the cognitive system as a whole, 
particularly as it applies to understanding situated, real 
world, expert cognition.  

The tension between the power of laboratory methods and 
the complexity of situated expertise has been addressed in a 
number of ways (Kieras & Meyer, 2000; Klein et al., 2003; 
Williams, 2006; West & Nagy, 2007). One approach that is 
useful in the context of cognitive modeling is to distinguish 
between micro-cognition and macro-cognition. Micro-
cognition refers to those mental operations that are typically 
studied in cognitive psychology experiments and which are 
thought to be invariant and underlie all of cognition (Klein 
et al., 2003). These include such functions as memory 
encoding and retrieval, and serial versus parallel attentional 
mechanisms (Klein et al, 2003). Macro-cognition, on the 
other hand, refers to cognition as it occurs in naturalistic 
environments, and includes such high-level operations as 
complex decision making, resource allocation, team co-
ordination, and responding to non-routine circumstances 
(Schraagen, Militello, Ormerod, & Lipshitz, 2008; West & 
Nagy, 2007).   
The method we are using is aimed at elucidating macro- 
cognitive processes and therefore eschews the siloing of the 
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component functions, as is common in studies of micro 
cognition.   Instead, we observe the expert performing the 
task as they naturally would, with minimal coaching or 
restrictions, and attempt to identify the components of the 
task afterward, in collaboration with the experts.  We wish 
to point out that we are not creating this as an alternative to 
lab based micro-cognition research. Instead, our approach is 
intended for use in conjunction with traditional micro-
cognitive research methods.  

Method 

Motivation, Philosophy and Scope 
There are two guiding motivations for this methodology. 
The first is the belief in the value of unification in modeling, 
and the second is what we perceive as the importance of 
integrating and making explicit the relations between 
experimental design, data analysis, and theory construction. 
Concerning the first motivation, we agree with Newell’s  
(1973) argument that, if we are ever to understand cognitive 
systems, the research community must attempt to integrate 
its efforts and avoid an unbounded proliferation of 
unconnected models.   

As for the second point, we want to encourage explicit 
attention to the relations between theory and method in 
cognitive modeling and experimental work. In particular, for 
this discussion it is important to distinguish between (1) 
systems for building computational models (e.g., ACT-R, 
GOMS, SOAR); (2) methods for creating models using 
these systems (e.g., task analysis, cognitive walkthroughs, 
ethnology); and (3) methods for evaluating the resulting 
models (e.g., hypothesis testing, model fitting). What we are 
proposing is a method for evaluating models. It can be used 
with any computational modeling system and any 
methodology for generating models within these systems. 

The intended scope of this methodology is the study of 
real world expertise, specifically in those domains for which 
some, but not all, behavior and cognition is routine. In the 
case of novices, behavior is generally too variable to be 
modeled using this approach. As practitioners develop 
proficiency in their domain, they generally converge upon 
optimal solutions (Shanteau & Hall, 2001), and thus we 
observe more consistency at higher levels of expertise than 
at lower levels (note: this methodology is not intended for 
“creative” expert domains such as music composition or 
fiction writing, where no convergence on an optimal process 
is expected).  Due to factors such as chaotic environments, 
individual differences, the actions of co-workers, 
unexpected events, and/or the need to multi-task, experts in 
the same field do not always behave in the same way.  We 
are interested in the middle ground between behavior that is 
fully routine and repetitive on the one hand, and that which 
seems entirely unsystematic on the other.  We argue that this 
is the zone in which most real-world experts operate.  

Our methodology is more akin to systems engineering 
practice than it is to experimentation. We are not attempting 
to generate and test hypotheses as we would in lab-based 

experiments. Rather, we are attempting to develop and 
refine models until they adequately capture the range of 
relevant behaviors and cognitive operations. This approach 
is more consistent with a Lakatosian scientific framework 
(Lakatos, 1970) than with a Popperian one (Popper, 1963). 
In short, the process of evaluating our models rests upon 
iteration rather than falsification.  

While we respect the importance of falsifiability in 
theorizing, we must also be clear about when it is 
appropriate or possible. For example, it is problematic to use 
falsification to evaluate the validity of cognitive 
architectures, such as ACT-R, GOMS, or SOAR (Cooper, 
2007; Newell, 1973). Although some models built in these 
systems can be falsified, the architectures generally cannot 
be falsified because there are usually multiple ways to 
model the same task within a single architecture. In other 
words, the model can be adjusted to fit the data. 

Likewise, we argue that falsification is problematic for 
evaluating models of real world expert behaviour, but for 
different reasons. Specifically, although we are concerned 
with evaluating specific models, and not the architectures in 
which they are built, the naturalistic behaviour of experts 
across time is different each time they are observed, even 
for the same individual. Of course, many of the component 
behaviours, or unit tasks, are the same from scenario to 
scenario, and these can be isolated and studied in the lab, 
but this is not what we are evaluating. Our interest is in 
evaluating whether a model can realistically account for the 
sequence of decisions and behaviours as each different 
scenario unfolds. Lab-based hypothesis testing is 
inappropriate here because it is based on averaging across 
the same sequence of behaviours repeated within and/or 
across individuals, with no variations in the environment.  

Lakatos (1970) defines a program of research as scientific 
if it is making progress over time, where progress may be 
demonstrated in multiple ways. For example, progress may 
include the discovery of new phenomena, falsification, 
hypothesis confirmation, increased parsimony, theory 
unification, counterfactual predictions, etc. Our method is 
based on two criteria for progress: (1) an increase in the 
amount of data accounted for by the model, and an increase 
in the percentage of times the model correctly predicts the 
next action of the human expert, and (2) an increase in the 
scope of the model, i.e., as we collect more and more 
samples of expert behaviours, the same model must cover 
all of them without any parameter changes. 

Overview 
The method we have been developing is an iterative, 

collaborative approach to creating macro-cognitive models. 
The process involves recording video footage of experts 
performing in naturalistic environments then using this 
information to construct a model of the task. Using this 
model as a base, we use an iterative model-tracing 
procedure to improve it until it is sufficiently robust to 
predict all or most of the high-level behavior observed. We 
do this using freely available tools and make our data and 
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models available to other interested parties. The process is 
laid out in more detail below. 

Procedure 
1 - Video capture  The first step is to collect video footage 
of experts performing in a naturalistic environment, as well 
as documentation about the task and interviews with 
experts. Rather than constructing a simplified task 
environment and attempting to isolate components of the 
task performance, we aim to have the experts demonstrate 
their skills in the messiness and complexity to which they 
are accustomed and which forms the necessary background 
against which their training and expertise are normally 
expressed. This step is similar to techniques used in 
cognitive task analysis (Kieras & Meyer, 2000) and 
cognitive ethnography (Williams, 2006).  
 
2 - Task Model Construction  Once video footage has 
been collected, we review it with the experts and attempt to 
determine patterns and regularities in task performance. We 
ask the experts to tell us what their goals and sub-goals were 
at each given point, what their strategies for accomplishing 
these goals were, and to identify which elements of the 
environment were relevant in their decision making (note 
that this process can be begun before video data is 
collected).  
 
3 - Cognitive Model Construction  Once we have created a 
task model, we construct two separate but inter-related 
models: a cognitive process model capable of completing 
the tasks, and a perceptual model, which we have termed the 
situational awareness (SA) model, that describes what the 
agent pays attention to in the environment and how these 
environmental cues are combined into a meaningful 
interpretation. These two models are linked in that the 
process model relies on the SA model for a meaningful 
interpretation of the environment and the SA model relies 
on the process model to provide context (e.g., in terms of 
the current goals of the agent), which is used to interpret 
raw environmental cues to create situational awareness. 

The framework we are using to inform this step is called 
Sociotechnical GOMS, or SGOMS (MacDougall, West, & 
Hancock, 2012; West & Nagy, 2007), which is an extension 
of the GOMS modeling framework (John & Kieras, 1996). 
However, our method is not necessarily tied to any 
particular theory of cognition and therefore we will not 
discuss SGOMS in detail. 
 
4 – Video Annotation and Model Tracing  Once we have 
constructed the two models, we use them to annotate the 
video footage we have collected.  We identify which actions 
are being undertaken at each point in the video, what the 
current goals and constraints driving behavior are, and 
which elements of the context are relevant in decision 
making.  As these are determined, we note on the video 
which actions are being undertaken and specify their time 
course.  To create these annotations we are using the 

ANVIL Video Annotation software (Kipp, 2010).  See 
Figure 1 in for a screenshot of video that has been annotated 
in ANVIL.   

 

 

 
 

Figure 1: ANVIL-annotated video frame of gameplay. 
 

The annotation procedure is accomplished through an 
iterative process of model tracing.  To do this, we first 
annotate the video by noting when behavioural elements 
related to the cognitive model appear on the video. Then we 
annotate the video with regard to the SA model. This 
process occurs in multiple cycles or iterations. We 
repeatedly make additions and deletions to the models in 
order to more accurately capture the range of behaviors and 
relevant contextual elements demonstrated in the dataset.    

In the refining process, we use an adapted form of model 
tracing, a practice that has been used to positive effect by 
designers of intelligent tutoring systems (Koedinger & 
Anderson, 1997; VanLehn, Freedman, & Jordan, 2000).  In 
effect, we try to determine at each point in the task 
performance whether the observed human behavior is 
consistent with predictions made by the model.  We do this 
by assessing whether the model could have reasonably (see 
the discussion section for more on this term) chosen the 
same action as the human agent did, given the states of both 
the SA and cognitive models’ allowable responses to that 
state. If the models cannot account for the observed 
behavior, we attempt to modify them.  This is one of the 
ways in which this method differs significantly from 
hypothesis-based experimentation: we do not conduct the 
annotation process in order to test whether the current build 
of our model is correct or incorrect, but rather with the 
intention of improving the existing model so that it more 
accurately and parsimoniously predicts the observed 
behavior.  In a sense then, the model informing the 
annotation can be viewed as a “rolling hypothesis” which is 
updated and refined with each iteration over the video. 

When making modifications to the model, we create a 
second “branch” of the model (as in software engineering), 
and test the new configuration against the previous one.  If 
the new additions or deletions improve the accuracy of the 
model, they are maintained, otherwise they are rejected and 
the initial model is retained.  We determine whether an 
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iteration is an improvement upon the previous model by 
noting the number of times each version fails to predict 
what the expert did.  We consider the model construction 
process complete when further iterations cease improving 
the accuracy of the model.  Some potential difficulties with 
this part of the method, such as the risk of over-fitting the 
model or of having an unbounded number of possible 
actions within the model, are examined in the discussion 
section. 

 
5 – Model and Data Release  Once we have finished 

developing a model and have used it to annotate video 
footage, we release online both the model and the annotated 
data (video footage) to other interested parties.  This is, we 
think, a crucial component of cognitive modeling at the 
communal level.  It encourages transparency and allows for 
more rigorous peer evaluation of research claims, and it 
facilitates collaboration between investigators. It also 
encourages data and model re-use.  

None of the various elements that we have combined are 
new. Our contribution lies, we hope, in demonstrating the  
scientific potential of embedding iterative model building  
in a systematic, explicit methodology for evaluating models 
of real world expertise. 

Example: Video Game Playing 
We have used the method described here to construct 

models of video game playing, professional mediation, 
chess playing, and professional cooking.  We will describe 
one of these cases, namely a model of playing Gears of War 
3 (Activision), a third-person shooter game for the 
Microsoft XBOX 360. 

In order to construct the model, we had several expert 
players play the game while we recorded the screen.  
Afterwards, we asked the individuals to discuss their 
strategies and thought processes while playing, and began to 
construct the task model.  Once we had an idea of what they 
were paying attention to in the environment, and how they 
were making decisions, we began constructing the SA 
model and the cognitive model. 

Figure 2, below, represents the process schematically.  On 
the top is the video frame from Figure 1; this depicts what 
players would see on screen, and was the video data that 
formed the basis for the annotations.  On the bottom left is a 
representation of the cognitive model.  This contains 
cognitive and behavioral actions, such as “find cover”, 
“engage enemy”, or “assess threat” along with the 
conditions under which they can occur.  The SGOMS model 
also covers high level planning and dealing with unexpected 
interruptions. The visualization of the cognitive model 
depicted in Figure 2 is output from software that we have 
developed in-house for visualizing these models; the 
software can be downloaded at 
https://github.com/mattmartin256/SGOMS_GUI.  On the 
bottom right is a representation of the SA model, which lists 
the important elements of the environment that are attended 
to.  Examples of these elements include the number of 

enemies on the screen, whether ammunition is running low, 
and the state of the character’s health. The blue arrows 
between components represent the fact that the construction 
process is iterative and that each component is used to 
modify and refine the others. 

 

 
 

Figure 2:  Schematic of Model Construction Process. 

Discussion 
The methodology presented here is a work in progress.  We 
are attempting to develop a systematic way of modeling 
expert behavior in complex, real-life scenarios. Such a 
methodology would be valuable, we argue, both for basic 
cognition research and to inform the design of socio-
technical systems. There are a number of potential 
difficulties, however, with such a method and we anticipate 
a number of criticisms here.   

The principle difficulty, and the one which this 
methodology is most explicitly attempting to address, is that 
there can be an overwhelming amount of complexity in 
naturalistic environments, and determining what is 
important or relevant is not straightforward.  Laboratory 
methods are aimed at carving out a tractable section of 
cognition or behavior, to save the investigators from being 
forced to address everything all at once: some sub-set of 
phenomena is selected as important.  Determining what is to 
be included in a cognitive model or experimental design is 
not atheoretical or pre-theoretical though.  Each 
experimental design or modeling framework necessarily 
includes certain elements and excludes others.  Any chosen 
methodology thus “smuggles in” theoretical assumptions 
about what ought to be paid attention to and what we can 
safely ignore. This is the problem of deciding on one’s “unit 
of analysis”, which is a common problem in all scientific 
disciplines (Hutchins, 2010). 

The various approaches for studying expertise define the 
unit of analysis in many different ways according to the 
methods and theories being employed.  These may include 
error rates and reaction times (Burkhardt, Détienne, & 
Wiedenbeck, 1997), memory recall tasks (Vicente & Wang, 
1998), eye movement patterns (Reingold, Charness, 
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Pomplun, & Stampe, 2001), and verbal protocols 
(Greenwood & King, 1995), among others.  The unit of 
analysis we wish to use is the interaction of an expert (or 
group thereof) with a complex socio-technical system. We 
are trying to accommodate this complex unit by bridging the 
methodologies of experimental psychology approaches that 
use rich environmental and behavioral descriptions, such as 
cognitive ecology and anthropology (Bender, Hutchins, & 
Medin, 2010; D’Andrade, 1995). In essence, we are trying 
to combine the rigor and predictiveness of process modeling 
with the richness of ecological studies.   

The second difficulty is that individuals are often unable 
to vocalize what they know (Clark, Yates, Early, & 
Merriënboer, 2008). We accept that much of the cognitive 
activity occurring “under the hood” will be invisible and 
may be unavailable for reporting by the expert. We thus do 
not assume that the input from our participant experts is the 
final word on what they are doing mentally. At the same 
time, however, we believe that this feedback from experts is 
a desirable component in modeling expertise, and a useful 
starting point for developing models of expert cognition. 
Also, it is important to note that the modeling approach used 
will affect the interactions with the experts. For example, we 
used SGOMS so our interactions with the experts were 
naturally geared toward eliciting the information and 
structures needed to build this type of model. 

A third challenge with this method is the degree to which 
human judgment is required in the construction and 
evaluation of these models.  When deciding whether to add 
or remove an element from a model, or in judging whether 
the model has accurately predicted a sequence of behavior, 
we must rely on the modellers’ knowledge and 
discrimination, and these cannot be perfectly formalized.  In 
other words, the evaluators must decide whether the model 
could have “reasonably” predicted each decision and action, 
given the elements in the cognitive and perceptual models.  
Because we are specifically interested in complex 
environments in which there is significant behavioral 
variability between participants and trials, we must use 
judgment in determining whether two instances of action are 
equivalent according the model.  For example: in the game 
play scenario presented above, no two instances of the 
action “take cover” will be exactly the same on the screen, 
so we must be capable of abstracting from the data to equate 
the two instances.   

Our stance on this issue is informed by Herb Simon’s 
(1969) “ant on the beach metaphor”.  This states that the 
observed behavioral complexity and variability of an agent 
is often the result of the environment in which the agent 
acts, and does not originate within the agent itself.  In the 
case of the ant, the insect is a rudimentary cognitive-
behavioral system.  Watching an ant navigate a sandy beach, 
it may seem that the ant is moving in complex patterns, 
when, in reality, it may only be obeying the simple heuristic 
of “do not climb hills”. The point that we take from this is 
that superficially distinct behaviors may reflect the same 
underlying cognitive processes.  It is in determining whether 

such equivalence exists between instances of behavior that 
the role of judgment comes into play in this methodology. 
Here, the public availability of the cognitive and perceptual 
models along with the annotated videos plays a crucial role. 
The claim that a judgment was reasonable must stand up to 
public scrutiny. 

Another consideration in the use of this methodology is 
the difficulty of choosing which elements to include in a 
given model.  We need to negotiate between two extremes: 
over-fitting and unbounded growth.  In the former case, we 
want models to be capable of accurately predicting behavior 
by the collection of experts studied, and a model tied too 
specifically to a single instance or agent will fail to meet this 
goal. In the latter case, we want to avoid the temptation of 
endlessly adding elements to the model whenever something 
unexpected occurs.  This is connected to Simon’s ant 
metaphor: we need to determine when superficially 
dissimilar behaviors represent the same underlying 
mechanism, because without such abstraction and equating, 
the models will quickly become bloated and unwieldy.  The 
final goal is to develop models that are informative, 
predictive, and lean, and this requires a balance between 
specificity and generality.  

One way of evaluating progress on this path arises from 
our goal to create one unified model that applies across all 
instances of a field of expertise. Following from our use of 
branching and the comparison of new models with old, we 
would expect our current model to be backwards compatible 
across all the videos used up to that point. If the model has 
been over-fit it will not show a consistent advantage across 
all of the videos. With each iteration the demands on the 
model are actually increased. Eventually, diminishing 
returns on adjusting the model would signal that it is about 
as good as it will get. At this point the model and the 
annotated videos can be used as a benchmark to evaluate 
alternative models against.  

In terms of quantitative evaluation, we are currently using 
as our metric the percentage of correct predictions the model 
makes of the expert’s next action (this measure was also 
used in West & Nagy, 2007). However, we are working on 
other, more detailed ways of quantifying how good the 
models are. For example, in some cases the model makes a 
single prediction of what is likely to come come next, but in 
other cases the model allows for more than one possible 
next action. Currently, we are experimenting with 
incorporating the number of predicted next actions at each 
point into our quantitative measure. For example: if two 
models are equally predictive in terms of the percentage of 
actions accurately predicted, but one model regularly 
predicts a greater number of next possible actions, that 
model ought to score lower, as it is a less lean (more 
bloated) model of the expert behavior.  

 
Conclusion 

We have presented a methodology for modeling expert 
behavior and cognition in complex, naturalistic 
environments.  Such a technique will, we hope, be valuable 
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in furthering our understanding of expertise and situated 
cognition, and may also be useful in improving the design 
of socio-technical systems, such as emergency operations 
centers or aircraft cockpits.  We support an open-source 
approach to scientific research, and hope that explicit 
attention to methodology, along with the open sharing of 
tools, data, and models will facilitate collaboration among 
researchers and the development of more unified, 
comprehensive cognitive models.  
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