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Abstract

Models of errors during routine sequential action are typically
interface-independent. We present here evidence that different
task spatial layouts, however, result in different patterns of se-
quence errors. We explain this data by expanding upon the
Memory for Goals framework’s activation-based, sequential
process to include environmental (such as visual) contextual
cues, as well as a richer priming structure. We show a strong
qualitative and quantitative fit to experimental data.

Keywords: Priming; routine sequence errors; cognitive mod-
eling.

Introduction
Sequence errors are errors in the order of steps ideally taken
to complete a task. Typically, routine sequence errors take the
form of either repeating previous steps (perseveration errors),
or skipping one or more steps (anticipation errors) (Reason,
1984).

Various accounts exist for sequence errors (Cooper & Shal-
lice, 2006; Botvinick & Plaut, 2006). One successful model
is the memory for goals (MFG) model (Trafton, Altmann, &
Ratwani, 2011), which uses episodic control codes to direct
step-by-step progression through the task. At any point, the
most activated code is selected as the current step to work on;
this is based on activation strengthening (i.e., frequency and
recency of use), as well as activation from priming effects
(i.e., associated cues from the current goal).

These current theories of sequence errors are interface-
independent; that is, they do not depend on spatial specifics
of the task interface. We present here evidence, however, that
changes in a task’s spatial layout can lead to different pat-
terns of sequence errors. This difference could be explained
by spatial reasoning, but there are not currently spatial reason-
ing theories integrated into sequence error theories. Instead,
we explain this data with a model that utilizes the main prin-
ciples of MFG, including activation and priming; crucially,
however, it expands MFG’s notion of priming with a richer
priming structure, and allows it to capture a fuller environ-
mental context (Hiatt & Trafton, 2013; Thomson, Bennati, &
Lebiere, 2014).

In this work, priming can stem from anything in work-
ing memory, including visual representations, and can be
the result of explicit correspondences between concepts, as
well as more implicit relationships, such as co-occurrence.
This fuller view on priming allows our model to explain the
changes in error patterns stemming from different task inter-
faces, in large part because our account of priming includes
visual cues. We next describe an experiment showing how
task layout affects error patterns; then we discuss our model,

show that we provide a good qualitative and quantitative ac-
count for the data, and end with a discussion of the implica-
tions of our approach.

Experiment
Forty-three participants performed a version of Ratwani and
Trafton’s financial management task (Ratwani & Trafton,
2011). The task is a form-filling task where steps need to be
performed in a specific order to buy or sell stocks. The layout
primarily consists of two columns; unlike previous versions
of the task, where the task step sequence moves down the
columns (a columnar layout; e.g., Ratwani & Trafton, 2011;
Trafton et al., 2011), here, the step sequence goes across be-
fore going down (a horizontal layout; see Figure 1). Each
step, save the first and the last, consists of selecting the appro-
priate widget, and then selecting the appropriate value before
hitting a “submit” button. The first step consisted of choosing
a stock to trade; the last involved hitting a “Complete Order”
button (a post completion step; Byrne & Bovair, 1997). The
task had no place-keeping, so upon completing a step, there
were no cues about the correct step to take next.

Participants performed three training trials, followed by 20
testing trials. Occasionally, after completing a step, the screen
cleared and the participants were interrupted to perform a
simple arithmetic task; the interruption lasted 15 seconds. Af-
ter the interruption, the participants were expected to resume
the task and continue with the next appropriate step. For five
of the testing trials, there were three interruptions; another
five trials had two interruptions each; five trials had one inter-
ruption each; and five trials had zero interruptions. The trial
order was randomly determined outside the knowledge of the
participants to keep participants from guessing whether a step
would be followed by an interruption.

Occasionally, participants made an error by selecting the
wrong step to work on next. The highest percentage of the
errors by participants occurred when resuming from this in-
terruption, especially given that there was no place-keeping;
these errors are what we analyze and model here. We describe
these sequence errors in terms of how far ahead or behind of
the correct step the selected step was. So, if a step is repeated,
it is considered a -1 (perseveration) error, since the selected
step is one step behind the correct step. If a step is skipped,
it is considered a +1 (anticipation) error, since the selected
step is one step ahead of the correct step. If a step two steps
back is repeated (such as performing step 7, “Associate”, af-
ter performing step 8, “Order Info” in Figure 1), that would
be a -2 error, since the selected step is two behind the correct
next step; and so forth. If an incorrect step was selected, the
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Figure 1: Horizontal stock trader interface. The steps are numbered to indicate the order in which they should be completed;
they are shown here for illustrative purposes only.

system beeped and the correct step was highlighted in a red
color to allow the participant to recover and continue.

The data from the horizontal task show both similarities
and differences with the columnar versions of this task (Fig-
ure 2). As with the columnar versions (and other routine se-
quence error tasks, as well), the most common error for the
horizontal task was the immediate (-1) perseveration error,
and there were more perseveration errors overall than antici-
pation errors. Also in accordance with the columnar data, the
distribution of errors clusters around the +/-1 errors, and falls
away in both directions as the error type gets farther from the
correct step (Altmann, Trafton, & Hambrick, 2014).

The horizontal data, however, also show a different pat-
tern of this gradation: namely, a higher proportion of +/-2 er-
rors that occur, compared to +/-1 errors, caused by its distinct
spatial layout; an effect which other approaches are unable
to explain. The horizontal data also have a wider distribu-
tion spread, overall. To preview our approach, we explain the
higher proportion of perseveration errors as due to differences
in strengthening and priming activation values, which are true
regardless of the task interface. In contrast, the difference be-
tween the two patterns of data stems primarily from visual
priming, which can lead to interface dependent effects. We
discuss this further below.

Model Framework
We investigate our account of error prediction within the cog-
nitive architecture ACT-R/E (Trafton et al., 2013), an em-
bodied version of ACT-R (Anderson, Bothell, Lebiere, &
Matessa, 1998). ACT-R is an integrated theory of human cog-

nition in which a “production system operates on a declarative
memory” (Anderson et al., 1998). In ACT-R, activation of
memories has three main components – strengthening, prim-
ing, and noise – which are added together to represent a mem-
ory’s total activation. We next discuss each in turn.

Activation Strengthening

ACT-R’s well-established theory of activation strengthening
has been shown to be a very good predictor of human declara-
tive memory (Anderson et al., 1998; Anderson, 2007; Schnei-
der & Anderson, 2011). Intuitively, activation strengthening
depends on how frequently and recently a memory has been
relevant in the past. It is designed to represent the activation
of a memory over longer periods of time and, generally, is
highest right after the memory has been accessed in working
memory, slowly decaying as time passes. Activation strength-
ening is calculated according to:

As = ln

(
n

∑
j=1

t−d
j

)

where n is the number of times a memory i has been refer-
enced (e.g., used in working memory) in the past, t j is the
time that has passed since the jth reference, and d is the a
strengthening learning parameter, which defaults to 0.5. Im-
portantly, the negative exponent in this equation implies that
recent memories are more differentiated from each other than
memories farther in the past.
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(a) Distribution of sequence error after an
interruption in a columnar interface. Data is
from Trafton et al., (2011).
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(b) Distribution of sequence errors after an
interruption in a horizontal interface. Note
the higher proportion of +/-2 errors, and
wider distribution spread, that occur.

Figure 2: Contrasting patterns of errors are produced when
task versions have different spatial layouts.

Activation Priming
While priming has long been a part of the ACT-R frame-
work (e.g., Anderson, 1983), we adopt a newer, richer no-
tion of priming as part of our approach (Harrison & Trafton,
2010; Hiatt & Trafton, 2013; Thomson et al., 2014). One
substantial difference is that, here, activation priming sources
from any part of the model’s working memory, including
the model’s goal, intermediate problem representations, and
visual representations of what the model is looking at. It
then spreads, along associations, to other memories related
to those in working memory.

Another main difference is the richer structure of asso-
ciations. Relevant to our discussion here, associations can
be created not only because of explicit correspondences, but
also due to co-occurrence and residual relationships. Co-
occurrence associations are created between memories i and
j when they are both referenced in working memory at the
same time. Residual associations are created between memo-
ries that have been referenced in working memory in tempo-

ral proximity to one another, even if they are not in working
memory at the same time.

Once established, associations have an associated strength
value which affects how much activation is spread along
them. Mathematically, the strengths (S ji) are:

S ji = mas · e
−1

al·R ji

R ji =
f (NiC j)

f (C j)− f (NiC j)+1

These equations reflect two parameters: mas, the max-
imum associative strength; and al, the associative learning
rate. The function f tallies the number of times that memory
j has been referenced, either independently (C j) or at similar
times to when i has been referenced (NiC j). An associative
strength, intuitively, reflects how strongly a memory, when
currently being referenced in working memory, predicts that
a memory it primes will be referenced next, and are a function
of how often the two memories are referenced by working
memory at the same time, versus how often each one is ref-
erenced in working memory without the other (represented
by R ji). These equations are explained further in Hiatt and
Trafton (2013); residual associations are discussed further in
Thomson et al. (2014). The associative strengths’ qualitative
properties are what are key here: namely, that residual associ-
ations are typically weaker than co-occurrence associations.

To summarize, associative priming provides the models
built in this framework with a rich network for spreading ac-
tivation that can capture correspondences between memories
that are frequently relevant at roughly the same time, as well
as correspondences between memories or concepts of differ-
ent modalities. We rely on both of these features of priming
for our model, described below.

Activation Noise
The activation noise of a memory is drawn from a logistic
distribution with mean 0 and standard deviation the parameter
σc. It is a transient value that changes each time it is used, and
models the neuronal noise found in the human brain.

Perception and Action
Finally, the model interacts with the world using ACT-R/E’s
built-in functionality for interacting with the world. Models
can view computer interfaces on a simulated monitor; they
can act on the world by pushing keys on a simulated keyboard
and clicking a simulated mouse.

Activation-Based Model of Sequence Errors
The model’s general principles are that it uses activation
strengthening and priming to drive progression through a se-
quential task’s steps. At all times, the model maintains in
working memory a representation of its goal of completing
the task. Before any given step, the model decides what
step to perform next by first performing a free retrieval of an
episodic code representing the last step that has been com-
pleted (or, if there is already an episodic code in working
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memory, it simply retains it). Once there is an episodic code
in working memory, it then performs a free retrieval of a step,
and considers the retrieved step to be the correct next step to
perform. It then repeats this process to move on to the next
step. At any of these points, as we will show below, prim-
ing can come from any item in working memory, including
what the model is working at, and can greatly influence the
progression of the model through the steps.

Specific to this task, we assume that the representation of
the step includes a visual location for where the step is located
on the screen, which the model uses as a guide when moving
to complete that step. The model is abstract in the sense that
it was not concerned with the actual values to fill in to the
widgets; instead, its primary responsibility is to attempt to
complete the steps of the task in the correct order during each
trial. After selecting a widget to work on, it thus clicks the
submit button without filling in any values. At the end of a
task, the entire working memory is cleared before the model
begins the next trial. The model does not perform the post-
completion step (e.g., step 14 of Figure 1).

During an interruption, the arithmetic task requires the use
of the entire working memory, and so all stock task-related
memories (including goals and episodic codes) are removed
from working memory. Upon completion of the interrupting
task, the model adds a new task goal to working memory,
and decides what step to perform next using the process de-
scribed above. Here, however, in addition to performing a
free retrieval of an episodic code, the model looks at the posi-
tion of the previous step in the interface before attempting
to retrieve the next step. Eye-tracking data collected dur-
ing the experiment showed that, after an interruption, par-
ticipants look at the correct next step only 13% of the time.
Participants, instead, first looked most often at the previous
step upon resumption (15%), with the rest generally looking
at locations or steps in close proximity to the previous step
(such as the step above or below). We assume that this wide
spread of where participants look is, in part, due to error in
the eye tracker as well as due to error stemming from par-
ticipants noisily remembering the last location at which they
were looking before the interruption. We do not have a the-
oretical model of visual location memory, but instead model
the visual location noise by adding a small amount of Gaus-
sian noise to the position of the last step, and focusing the
model’s visual attention on the step nearest to that noisy lo-
cation.

As the sequence process unfolds, many associations are
created between the various components involved. Critical
to our approach, associations are created between nearby se-
quential steps, as well as between the visual representation of
a step and the next step. Figure 3 illustrates associations for
the eighth step of the stock trader experiment; all of the asso-
ciations are created from co-occurrence except for those be-
tween 6.RequestedPrice and 8.OrderInfo, and between 8.Or-
derInfo and 10.MarginRate, which are residual associations.

During a normal, non-resumption step, the free retrieval

8.OrderInfo+

task0state0X+

stock0trade0X+
6.RequestedPrice+

7.Associate+

7.Associate.Visual+

9.Margin+
10.MarginRate+

Figure 3: Illustrative associations for the eighth step of the
stock trader experiment, Order Info. “Task-state-X” is a
placeholder for various episodic codes associated with Order
Info over time. “Stock-trade-X” is a placeholder for various
goals associated with Order Info over time; episodic codes
are associated with the goal in working memory that they co-
occur with. Other associations are made, as well, but for clar-
ity we omit those not relevant to our discussion.

of the episodic code is highly affected by both the very near
recency of the episodic code (activation strengthening), and
from priming from the current goal. Then, the free retrieval
of the next step is primarily influenced by priming stemming
from the episodic code of the prior step in working memory.
These priming and strengthening effects result in a very low
error rate during normal task sequence execution.

When resuming after an interruption, however, the model’s
path is not as clear-cut. For example, since some time has
passed since the previous episodic code was last in use, it is
more apt to be confused with previous episodic codes, po-
tentially leading to an incorrect retrieval; this is exacerbated
by the new goal in working memory, which does not provide
priming cues to the previous episodic code. The model also
may look at the wrong previous step due to its noisy visual
location memory. These potentially incorrect sources of acti-
vation mean that the model does not always retrieve the cor-
rect step to perform after an interruption. Additionally, even
if both these steps do go correctly, priming from the previous
episodic code may lead to an anticipation error, because of
the residual associations between non-sequential steps. These
competing sources of activation comprise the crux of our ap-
proach and are explained in more detail, below.

Model Predictions
The model makes a number of activation-based predictions
for post-interruption errors in this task. There are two factors
that contribute to the final set of activations for a resumption
step: the prior episodic code that is retrieved, and what the
model is looking at. Different outcomes of these two potential
process affect the overall pattern of errors for the retrieved
step:

• Retrieve the correct episodic code: Here, priming activa-
tion from the correct, prior episodic code biases the model
towards the correct answer. It also spreads some activation,
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however, to the +1 anticipation step via residual associa-
tions (such as how 6.RequestedPrice primes 8.OrderInfo
in Figure 3), leading to a possibility of a +1 anticipation
error. Occasionally, residual associations can also result in
a +2/+3/etc. error.

• Retrieve the wrong episodic code: This happens because
of activation strengthening decay. After an interruption,
recent episodic codes are close enough in activation that
earlier codes may be retrieved. This always results in a bias
towards perseveration. A bias towards errors of -1 are the
most common, here, but it is possible that errors of type
-2/-3/etc. could stem from an incorrectly retrieved prior
episodic code as well.

• Look at the right previous step: This biases the model to-
wards performing the correct step next.

• Look at the wrong previous step: Because of visual prox-
imity, the wrong step being looked at is either above or
below the previous one. This will bias the model towards
the incorrect step being looked at.

Based on these potential process errors, the model makes
several predictions for sequence errors. First, the model pre-
dicts more perseveration errors than anticipation errors be-
cause, intuitively, the model is more likely to retrieve an in-
correct past episodic code (potentially leading to an antici-
pation error) than it is to retrieve an incorrect step based on
residual priming (potentially leading to an anticipation step).
More technically, the difference in activation strengthening
between the past episodic codes is less than the difference in
activation priming that an episodic code spreads to the correct
vs. future step, leading to more errors occurring there. It fol-
lows that this difference also predicts that the most common
error type is the -1 perseveration errors. These predictions are
interface-independent.

Because of its inclusion of visual priming, the model also
predicts the pattern of errors will differ depending on the
task’s spatial layout. In the previous columnar layout, look-
ing at the wrong previous step spreads activation to the +/-1
steps. In the horizontal layout, however, looking at the wrong
previous step spreads activation to the +/-2 steps. Based on
this, the model makes two spatial-dependent predictions for
the horizontal task version.

First, it intuitively predicts a relatively high proportion of
+/-2 errors because of the increase in priming activation those
steps receive when the model looks at the incorrect step. Sec-
ond, it predicts a wider distribution spread, overall. This is
because the set of steps commonly competing for retrieval
(e.g., {-2, -1, 0, 1, 2}) is larger than the set commonly com-
peting in the columnar task version (e.g., {-1, 0, -1}), making
the distribution of steps ultimately selected more spread out.

To reiterate, the key difference between this model and the
original memory for goals model is the depth to which prim-
ing is utilized by the model. In the MFG model, priming
derived from explicit correspondences between the goal and
episodic code, and so environmental context (such as priming
from visual sources) was not a factor; this makes it unable

to capture correspondences between visual objects and other
memories, and so it does not predict any shift in error patterns
between the two task interface layouts. In addition, MFG
does not include residual priming associations in its account,
making it very difficult for it to account for +2 errors, even in
the columnar version of this task. Finally, in MFG, priming
relied upon explicit correspondences between features, some
of which were assumed a priori, unlike our model which as-
sumes no associations to begin with and builds up its rich
network as it trains for, and then tests on, the task.

Model Fit
We ran the model 43 times to simulate data from each of the
43 participants from the horizontal stock trader study. Before
beginning testing, the model first performs 3 training trials,
where it assumes it is being instructed with the task sequence
as it moves through the steps. During these trials, the frame-
work of associations is set up that it will rely upon as it con-
tinues on to perform the 20 testing trials, where it continues
to learn and update associations as well. Interruptions during
the experiment had the same structure as in the original study.

ACT-R/E includes several parameters that affect activation
dynamics and, thus, model behavior. The associative learning
rate, which affects the rate at which associations are strength-
ened, was set to 6.5, which represents a fairly brisk rate of
learning. There is no standard value for this parameter. The
maximum associative strength was within its normal range at
3.0. The activation noise parameter σc was 0.08, which is
also within its typical range. All other parameters were set to
their default values.

We compared the proportion of errors of each type that the
model made with the proportion of errors of each type from
the study; this allows us to compare the data both qualitatively
(overall error trends) and quantitatively (specific distribution
of results). The results are shown in Figure 4. Overall, the
model’s results matched the data very well, with R2 = 0.99
and RSE = 3.3. It also qualitatively matches the data’s trends,
with -1 perseveration errors being the most common error
type, and with a higher proportion of +/-2 errors and rela-
tively wider distribution.

Discussion
This work utilizes the underlying principles of memory for
goals – that sequential steps are driven by episodic codes,
and that those episodic codes are selected based on activa-
tion – while expanding its scope. In addition to the strength-
ening, goal-based priming and noise activation components
present in the memory for goals model, our model provides
an expanded view of priming that includes priming activation
from all items in working memory, and fosters a richer prim-
ing structure enabled by additional types of associations. This
allows our approach to account for data from sequential tasks
with different spatial layouts, something the MFG model
was not previously able to do, while also keeping it con-
nected with existing MFG models of sequential errors, post-
completion errors, and recovery time that have been shown to

248



−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

error type

pr
op

or
tio

n 
of

 e
rro

rs
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

●
●

●

●

●

●

●

●

●
●

● ●

●

Human Data
Model Data

Figure 4: Graph showing the proportion of each type of se-
quence error from both the experiment and the model.

be successful (Altmann & Trafton, 2002, 2007; Tamborello,
II & Trafton, 2014).

Other models of routine sequence errors, such as the in-
teractive activation network (IAN) model (Cooper & Shal-
lice, 2006) and the simple recurrent network (SRN) model
(Botvinick & Plaut, 2006), also ignore the specifics of the
task interface, and so cannot account for the differences in
error patterns that results from an interface layout shift. The
ideas behind our expanded priming approach, however, could
apply to IAN, which uses environmental and contextual acti-
vation to select between schemas that determine the next step.

Although our model does not account for other types of
errors, such as capture errors, it does provide some intuition
about how those errors take place. Capture errors, for exam-
ple, occur when a task sequence switches, mid-execution, to
a task sequence from a different, but usually related, task; for
example, checking e-mail after sitting down at a computer
when one originally intended to check the weather. Capture
errors, intuitively, involve much environmental context and
visual cues, which can be accounted for by our approach.
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