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Introduction
Decision heuristics are often described as fast and frugal,
meaning that they take little time and require relatively few
computations to make a decision when compared to optimal
decision systems (Gigerenzer & Todd, 1999). Fast & Frugal
Trees are one heuristic that are a special case of decision trees
in which there is a possible exit out of the decision process at
every cue considered in the tree (Luan, Schooler, & Gigeren-
zer, 2011).

There is currently no computational account of how hu-
mans learn heuristics like F&FT-based decision processes.
This is a significant gap in our scientific understanding, and
we aim to begin addressing that gap in this effort. In this ab-
stract we report results from a pilot study assessing Instance-
based Learning Theory (IBLT) as an account of human learn-
ing from experience in domains where F&FTs may be good
decision heuristics, such as diagnostic tasks.

Instance-based Learning Theory
Instance-based Learning Theory (IBLT) is a theory of how
humans acquire and apply new knowledge given performance
feedback and a particular context. It was developed to ex-
plain and understand human decision processes in dynamic
task environments (Gonzalez, Lerch, & Lebiere, 2003) The
four components of any IBLT model are (1) episodic mem-
ory elements (i.e., instances), (2) retrieving the instance from
memory, (3) contextual similarity, and (4) integrating feed-
back across multiple, contextually similar events. In essence,
an instance provides the utility of a particular action given a
specified context in a way similar to expected utility theory

As far as we can tell, IBLT has not been applied to decision
tasks where a set of different cues can be discriminately sam-
pled for improving decision making. In the following section
we introduce a multi-cue diagnosis task.

Multi-cue Diagnosis Task
The multi-cue diagnosis task is an extension of 2AFC tasks,
where a decision-maker is provided with two alternative re-
sponses and a set of cues with which to inform the decision.
Cues are binary (i.e., present or absent) and may be related to
particular responses; part of decision-makers’ task is to learn
which cue(s) is (are) important.

In the task, there are three cues that a decision-maker can
choose to use for determining a response. Cue information

is not immediately visually available and requires clicking on
a cue button to reveal its presence or absence. The decision
maker is free to use any number of the cues in any order for
informing their decision, and the only cost with accessing cue
information was behavioral (i.e., moving to, clicking, etc.).
Further, decision-makers were not speeded in their response
and no penalty was issued based on trial response time. Given
this basic task, we derived two environments: an easy envi-
ronment (EZ) and data recreated from real-world CCU di-
agnoses (GnM; Green & Mehr, 1997). These environments
were selected to provide approximate ceiling and floor perfor-
mance in not only response accuracy, but also the adoption of
prescribed F&FTs.

There were two payoff regimes: balanced (BAL) and
heavy-miss (HM). In balanced, hits and correct-rejections re-
ceived 10 points whereas misses and false alarms were pe-
nalized −10. The HM regime was the same as BAL except
misses received −50.

In the pilot study reported here we ran a 2 (environment dif-
ficulty) x 2(payoff regime) between subjects design. We ran
five participants through each of the four conditions. Each
participant performed nine blocks of 30 trials. For each sub-
ject, on each trial, we captured their accuracy, the symptoms
they revealed, and the order in which they were revealed.
For each block the proportion of correct responses (i.e., ac-
curacy), response time (RT), the proportion of selected re-
sponses (i.e., response selection), and the adherence to the
prescribed F&FT (i.e., rule adherence) was calculated. Sub-
jects’ performance improved with experience in each condi-
tion and the EZ environment was easier than the GnM envi-
ronment. Further subjects’ RTs decreased as their acquisition
and adherence to the prescribed rule increased (see Figure 1).

ACT-R Instance-based Learning Model
We developed an IBLT model in the ACT-R architecture
(Anderson, 2007). We used ACT-R’s declarative memory
system to instantiate IBLT components one and two. We did
not vary the degree of similarity between instances, instead
opting for identity. This is justified as there was no hypothet-
ical relationship between the binary cues. Finally, we used
the ACT-R blending mechanism to instantiate IBLT compo-
nent four.

The model used IBLT to determine the order of cues to
check, when to stop checking, and which response to make.
We believe this to be a novel use of IBLT, and the model
represents complete adherence to the theory for execution.
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Figure 1: Human data and model results.

The model did not use production compilation nor production
utility learning for acquiring any skill in the task environment.

Model Evaluation
We performed three evaluations of the model. For each eval-
uation, the model was run five times across 19 blocks of 30
trials, resetting after each run. The first evaluation (i.e., de-
fault fit) used parameters that were either default, taken from
the central tendency of parameters in the Max Planck ACT-
R parameter database (Wong, Cokely, & Schooler, 2010), or
hypothesized where no guidance was available (see Table 1).
The second and third evaluations (best fit-all but RT and best
fit-RT, respectively) varied the retrieval threshold, blending
temperature, activation noise, and decay parameters in a full
combinatorial design producing 37,632 combinations of val-
ues. We only modified declarative memory and blending pa-
rameters as the investigation was on the adequacy of IBLT to
account for multi-cue diagnosis tasks. Further, we report two
different RMSEs for each evaluation: one for RT and another
for the rest of the dependent variables (i.e., Other). We did
this because the RT and the other dependent variables are on
quite different scales.

The best fit-all but RT and best fit-RT surprisingly resulted
in the same model parameters, and thus is referred to as
best-fit (see Table 1, Best-fit column). The model performed
quite well in the default fit evaluation, with an RT RMSE =
1.162;R2 = 0.552 and an Other RMSE = 0.682;R2 = 0.914.
The model also performed well in the best-fit evaluation, with
an RT RMSE = 0.786;R2 = 0.747 and an Other RMSE =
0.466;R2 = 0.906. Interestingly, with an improved fit in RT
with best-fitting parameters (panel D, Figure 1) over the de-
fault (panel C), there is a reduction in rule adherence fitness

(see panel H & G). Further, the :rt and :ans parameters are
quite different from the central tendency of those reported by
the community (see Table 1).

Parameter Name Best-fit Default Source
decay (:bll) 0.1 0.4 MPIB-DB
base level constant (:blc) 0 1 Free
retrieval threshold (:rt) −50 −0.4 MPIB-DB
activation noise (:ans) 0.75 0.4 MPIB-DB
blending temp 1 1 Free
imaginal-activation 1 1 Free

Table 1: Parameter values for the default and best-fit mod-
els. MPIB-DB refers to the Max Planck ACT-R Database and
Free refers to hypothesized values due to no guidance on its
setting. The source refers only to the default model param-
eters as the best-fit were derived by iterating over the large
parameter space and minimizing RMSE. All other parame-
ters were default values.

Conclusions
Generally, IBLT seems well suited for multi-cue diagnosis
tasks. However, there appears to be a tradeoff between ac-
counting for rule adherence and response times. Specifically,
when fitting the model RTs, rule adherence decreased relative
to the default-fit parameters. Consequently, we conclude that
IBLT may not be sufficient to account for both RTs and rule
adherence in this environment. Finally, the default fit model
performed quite well, highlighting the value of making model
parameter databases available to the community.
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