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Problem Statement

Robots and other autonomous vehicles have great utility,
and even more potential: they go where human drivers
can’t breathe and where the lives of human pilots would
be too costly to risk. Unfortunately, robots and their
remote human operators do not always form a cohesive
team. When robots make autonomous decisions, opera-
tors can be surprised and will, consequently, lose trust in
the automation and end up micro-managing the robot.
The benefits of partial autonomy are lost in the process.

The project discussed here evaluates ways to commu-
nicate robot reasoning to operators when needed (c.f.,
Kennedy et al., 2007). Its goal is to restore appropriate
trust in automation without overloading the operator’s
attentional resources (c.f., Merritt et al., 2008).

Our approach assumes that misunderstandings be-
tween robot and operator are often due to differences in
available information about the environment, different
decision-making processes, and different levels of expe-
rience. Some sensory information may be withheld: the
robot might know more than it visualizes, or the hu-
man is able to interpret a video feed more accurately
than computer vision can. Further, decision-making al-
gorithms and expertise are not synchronized; a robot
may have un-inspectable machine-learning models, and
an operator might have years of field experience.

A Robot that Explains Itself

Our objective is to enable the robot to convey pertinent
information to improve monitoring performance and ap-
propriate trust in the system, via the right modality and
at the right time. The experiment discussed asks partic-
ipants to interact with a system that can explain itself
verbally. For instance, it may say “I see a table and some
glass shards on the ground. I planned a path around those
obstacles”. This explanation would allow the operator
to accept the reasoning as is, verify it by referencing the
simulated video feed, or reject it outright.

The system is designed to preempt operator surprisal
by providing explanations at the best moment. It allows
the operator to adopt a management-by-exception strat-

egy: monitoring the autonomous vehicles rather than
actively controlling them (Franke et al., 2005).

Experiment

The experiment has four conditions: no explanations,
explanations only by operator request, ongoing detailed
ones, and selective ones given when a cognitive model
(see next section) detects operator surprisal.

Participants are asked to divide their time between
the robot monitoring task (Figure 1) and a secondary,
sensory analysis task, which draws away their visual at-
tention. For the primary task, a standard exploration
scenario is used with different rooms containing office
furniture. It is implemented using a realistic robot sim-
ulation and operator interface (Gerkey et al., 2003).

Robots are evaluated by participants using a trust
questionnaire (Merritt et al., 2008) and through neglect
tolerance and preference ranking. We hypothesize that
operators develop more trust in the three explanation
conditions, and that they develop trust congruent with
robot performance. We expect them to maintain the
highest performance at both tasks only in the selective
(model-driven) condition.

Increased trust is not necessarily a desirable as au-
tonomous systems do make mistakes. In a second exper-
iment, we will concentrate on appropriate trust. Here,
participants are exposed to a high and a low-performing
simulated robot per condition. The low-performing
robot makes mistakes in identifying obstacles: it circum-
navigates glass shards, while attempting to go through
water, while its actual capabilities are the opposite (wa-
ter only is to be avoided). The ensuing errors have to be
corrected by the operator manually.

Application of a Path-Planning Model

How does the cognitive model predict operator surprisal?
We have equipped our experiment system with a cogni-
tive model formulated in ACT-R that predicts the oper-
ator’s cognitive process in planning paths for the robot.
When the robot’s path deviates from the path that the
model predicts, we detect potential for a surprise and is-
sue an explanation. The experiment (see is designed to
create situations in which the robot will misunderstand
sensory information and plan an inappropriate path.
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Figure 1: Operator interface, showing pre-defined goals
at the top and a path taken by the robot around desks,
chairs and some glass debris. In the condition shown,
the subject may request a voice explanation.

The cognitive model (Reitter et al., 2010) has orig-
inally been developed to fit comparable data: way-
points set by robot operators to carry out an urban
search&rescue task. In this setting, robots scout a con-
taminated office building, circumnavigate walls, cover all
rooms, and discover all victims of a fictitious disaster.
The insert in Figure 2 shows an itinerary defined by an
operator, along with the corresponding model path.

The model predicts the plans an operator would de-
velop for a robot to move from its given location to an-
other given location. As a theoretical rational solution,
one may think of a search process that guarantees the
shortest workable path. (This standard robotics prob-
lem can be addressed via a standard A* algorithm or the
more commonly used D*Lite (Koenig et al., 2005).) In
contrast, the cognitive model predicts that human opera-
tors use a heuristic that selects the straight-line segment
available from a given position that reduces the geomet-
ric distance to the goal; the initial choice is made at
the starting position, and then the algorithm is applied
recursively until the destination is reached or backtrack-
ing becomes necessary (for models of spatial navigation,
compare Fum et al., 2000; Zhao et al., 2013).

The model explains scalability of the task with size of
the environment as well as with cognitive load, such as
when paths are to be planned for multiple robots (see
Figure 2). It was evaluated with automatically gener-
ated mazes and on a dataset gained from robot operators
that controlled 4, 8 or 12 simulated urban search&rescue
robots at a time (Lewis et al., 2007).

Conclusions

As valuable as explanations may be, they can have a
downside: cognitive overload and distraction. Therefore,
our goal is to provide information when we believe it is
necessary during the monitoring task. The experiment
is designed to evaluate this approach.

The poster will present our analysis of the empirical
results with 40 participants (the experiment has not been
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Figure 2: Average model error (solid), model vs. indi-
vidual subject error (dotted), and avg. baseline model
error (dashed) at different operator workload conditions.
Insert: Example operator path for a robot (red crosses)
and model’s prediction for that path; difference area in
solid green (from: Reitter et al., 2010).

concluded at the time of writing).
With our approach, we do not design a cognitive model

to fit new experimental results. Instead, we use a model
that has been evaluated before as a means to predict
the expectations of human operators in a realistic task
relevant to national defense, safety and security. The
experiment helps us analyze explanations as a means to
affect trust in autonomous system. It also allows us to
evaluate an ACT-R model in an extrinsic setting.
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