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Abstract
We present Holographic Declarative Memory (HDM), a new 
memory module for ACT-R and alternative to ACT-R’s De-
clarative Memory (DM). ACT-R is a widely used cognitive 
architecture that  models many different aspects of cognition, 
but is limited by its use of symbols to represent concepts  or 
stimuli. HDM replaces the symbols with holographic vectors. 
Holographic vectors retain the expressive power of symbols 
but have a similarity metric, allowing for shades of meaning, 
fault tolerance, and lossy compression. The purpose of HDM 
is  to enhance ACT-R’s ability to learn associations, learn over 
the long-term, and store large quantities of data. To demon-
strate HDM, we fit performance of an ACT-R model that uses 
HDM to a benchmark memory task, the fan  effect. We ana-
lyze how HDM produces the fan  effect and how HDM relates 
to the standard DM model of the fan effect.

Keywords: ACT-R; memory; cognitive modeling; cognitive 
architectures; artificial  general intelligence;  integrated cogni-
tion; holographic reduced representations; vector-symbolic 
architectures

Introduction
Computational cognitive architectures provide the formal, 
unified theories of cognition necessary for cognitive scien-
tists to achieve an understanding of the mind. ACT-R (An-
derson & Lebiere, 1998) is a widely used cognitive architec-
ture that can model diverse aspects of cognition.  As an inte-
grated architecture, ACT-R is a good choice for modelling 
complex tasks. However, the ACT-R Declarative Memory 
system (DM) was designed for modelling the results of psy-
chology experiments and as such presents certain limitations 
for modelling complex, real world behaviour.  In what fol-
lows, we present Holographic Declarative Memory (HDM), 
a new module for the ACT-R cognitive architecture that 
addresses some of DM’s limitations. To help establish that 
HDM can provide the same functionality as ACT-R’s DM, 
we have modelled the fan effect task (Anderson, 1974), ana-
lyzed how HDM generates the fan effect, and used this 
analysis to compare the HDM and DM models.

Holographic Declarative Memory (HDM) replaces ACT-
R’s symbols with holographic vectors. Holographic vectors 
retain the expressive power of symbols but have a similarity 
metric,  allowing for shades of meaning, fault tolerance, and 
lossy compression of stored information.

HDM is based on BEAGLE (Jones & Mewhort, 2007), a 
learning algorithm that models how people abstract the 
meaning of words from their lifetime language experience, 
and DSHM (Rutledge-Taylor, Kelly, West, & Pyke, 2014), a 
model that uses a similar approach to BEAGLE but re-
purposes and extends the algorithm as a general memory 
model. HDM is implemented for Python ACT-R and the 
code for both Python ACT-R and HDM are available 
through GitHub1.  Our intent with HDM is to replicate the 
basic functionality of DM and provide new capabilities.

First, we provide an introduction to holographic models 
of memory and the fan effect. Next,  we detail Anderson and 
Reder’s (1999) ACT-R model of the fan effect. We then de-
scribe HDM and the ACT-R HDM model of the fan effect. 
We contribute a novel analysis  of how holographic models 
produce the fan effect and relate to Anderson and Reder’s 
model. Finally, we outline future work.

Holographic Models of Memory
First proposed by Longuet-Higgins (1968) and Gabor 
(1969), a holographic memory is a type of computational 
associative memory based on the mathematics of hologra-
phy. Holographic memory has been of interest to cognitive 
psychologists because of the following:

(i) Associative memories are content-addressable, allow-
ing for memory retrieval without search.

(ii) Holographic memories can compactly store compli-
cated and recursive relations between ideas.

(iii) Holographic memories have “lossy” storage, which is 
useful for modelling human forgetting.

Cognitive models based on holographic memory can ex-
plain and predict a variety of human memory phenomena, 
such as the serial position curve in free recall (Franklin & 
Mewhort,  2015). Holographic memory has also been used to 
model analogical reasoning (Plate, 2000; Eliasmith & Tha-
gard, 2001) and how humans perform simple problem-
solving tasks such as playing rocks, paper, scissors (DSHM; 
Rutledge-Taylor et al.,  2014) or solving Raven’s progressive 
matrices (Eliasmith, 2013). Knowledge in SPAUN, the 
world’s largest functional brain model (Eliasmith, 2013), is 
represented using holographic memory. 

ACT-R DM is not designed for modelling tasks that in-
volve large databases,  such as language comprehension. 
Conversely, BEAGLE (Jones & Mewhort,  2007) and 

1 A Python ACT-R distribution  with HDM included can be downloaded from <https://github.com/MatthewAKelly/ccmsuite> and the fan 
effect model, which requires Python ACT-R and HDM, can be downloaded from <https://github.com/MatthewAKelly/faneffect>. A guide 
to using Python ACT-R can be found at <https://sites.google.com/site/pythonactr/>.

148



DSHM (Rutledge-Taylor, Vellino, & West, 2008) are holo-
graphic models that have been used, respectively, to infer 
word meanings from a corpus and to infer patterns of movie 
preferences from a database of user movie scores.

Holographic memory models have also been previously 
used to model the fan effect.  Specifically, Dynamically 
Structured Holographic Memory (DSHM; Rutledge-Taylor 
et al., 2014; Rutledge-Taylor, Pyke, West, & Lang, 2010) 
has been used to model two versions of the fan effect task. 

Though HDM is based on DSHM, the HDM module for 
ACT-R differs sufficiently from DSHM that it is worth 
demonstrating that HDM can,  in fact, model the fan effect 
task. The differences between HDM and DSHM stem from 
HDM’s integration into ACT-R. As a module for ACT-R, 
HDM makes commitments as to the cognitive structure that 
the memory system is situated in. To interface with ACT-R, 
HDM commits to a particular way of encoding information 
and to a particular way of calculating reaction times that are 
distinct from the DSHM model.

Fan Effect
The fan effect task (Anderson, 1974) is a recognition mem-
ory task. During the study phase of the task, participants 
memorize a set of sentences that vary on some number of 
dimensions.  In the original fan effect task (Anderson, 1974), 
each sentence is of the form “the person is in the location” 
where the person and location vary from sentence to sen-
tence (e.g., “the hippy is in the park”).

Once the participants have the sentences memorized, they 
are given a recognition task. In the recognition task,  some 
sentences are from the study set (targets), and some sen-
tences are novel combinations of the people and locations 
from the study set (foils). Participants are instructed to iden-
tify as quickly as possible which combinations of person 
and location were in the study set and which were not.

The fan of a concept is the number of different sentences 
in the study set that contained that concept. For example, if 
“the hippy is in the park” is the only sentence in the study 
set that mentions the hippy, then hippy has a fan of one. If 
participants learn that there are four people in the park dur-
ing the study phase, then park has a fan of four. 

The fan effect refers to the finding that participants are 
slower to recognize or reject sentences that contain concepts 
that have a higher fan. The more people in the park, the 
slower participants are to decide if the phrase “hippy is in 
the park” was in the study set. Likewise, if participants learn 
that the hippy is in several different locations, they are 
slower to decide if the hippy was in a particular location.

The fan effect illustrates a fundamental principle of hu-
man memory: the availability of a piece of information in 
memory with respect to a cue is a function of the probability 
of that piece of information conditional on the cue.  If the 
participants learn four facts about the park, then given the 
cue park,  each of those facts have only one chance in four of 
being the relevant fact to retrieve. The retrieval time from 
memory will reflect that one in four chance. Conversely, if 
the participants know only one fact about the park, given the 
cue park, retrieval time will be rapid, reflecting the 100% 
chance that the fact will be relevant.

ACT-R’s Declarative Memory (DM)
In ACT-R, knowledge is represented in Declarative Memory 
(DM) as lists of slot:value pairs called chunks. Each slot is a 
task-relevant dimension of the stimulus, such as “colour” or 
“location”. For example, a red square could be described by 
the chunk “colour:red shape:square”. In the fan effect task, 
each sentence is represented by a chunk, e.g., “person:hippy 
place:park”. In Python ACT-R, chunks can also be ordered 
lists of values without slots, “red square” or “hippy park”. 
When the slots are omitted from a chunk, the order of the 
values in the chunk is used as the organizing principle.

Each chunk in DM has an activation. According to Ander-
son's (1991) rational analysis,  the activation of a chunk in 
memory is an estimate of the likelihood of the information 
in the chunk being useful in the current situation. Given a 
cue that describes the current situation, ACT-R retrieves the 
chunk in DM with the highest activation. Activation is a 
sum of a base level activation and a measure of the similar-
ity between the chunk and the cue. Base level activation is a 
measure of how frequently and how recently the chunk has 
been used. For a chunk i, the activation of that chunk, Ai, is

                         (1)

where Bi is the baseline activation of the chunk, n is the 
number of slot-value pairs in the cue, Wj is the attention paid 
to slot-value pair j of the cue, and each Sji is an association 
strength: a measure of the probability that chunk i is rele-
vant given that the cue contains slot-value pair j.

DM can be understood by analogy to a hydraulic system. 
Activation is like water and connections between cues and 
chunks are like pipes. Activation spreads from the cue to the 
chunks in DM. Chunks with stronger associations to the cue 
receive more activation. The chunk that receives the most 
activation is selected and retrieved from memory. The time, 
T,  to retrieve a chunk, i, is a function of the chunk’s activa-
tion, Ai, and two fitting parameters I and F,

                                (2)

The higher the activation, the shorter the retrieval time.
Although ACT-R has a mechanism for learning the asso-

ciation strengths, this has not been tested with the fan effect. 
Instead, each Sji for chunk i and slot-value j is

Sji =S + ln( P(i|j) )

where S is a fitting parameter and P(i|j) is the probability 
that chunk i will be useful given the presence of the concept 
j in the cue. In the fan effect, the chunk i might be “hippy 
park” and j might be park. If there are four people in the 
park then park has a fan of four. The probability that “hippy 
park” is the correct chunk given park is then 1/4 or, more 
generally, 1/f where f is the fan.

In the fan effect task, the experimental design is supposed 
to control for frequency and recency effects, and so the 
ACT-R model of the fan effect assumes all chunks have the 
same baseline activation, Bi,  and thus baseline activation can 
be removed from the equation.
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In Anderson and Reder’s (1999) ACT-R model of the fan 
effect,  reaction time for correctly identifying a target as be-
longing to the study set is calculated in milliseconds with 
the parameters S = 1.45, Wj = 1/3, I = 845, and F = 613. The 
target retrieval time for the fan effect model works out to be:

T = 239 fperson1/3 fplace1/3 + 845

where fperson is the person’s fan and fplace is the place’s fan. 
This model provides a good fit to participant reaction times 
to targets in the fan effect task, r = 0.95 (see Figure 1).

Holographic Declarative Memory (HDM)
In Anderson and Reder’s (1999) ACT-R DM model of the 
fan effect, it is necessary to set the correct association 
strength Sji for each concept j and chunk i. However, Holo-
graphic Declarative Memory (HDM) produces the fan effect 
by learning the study set. The association strengths are not 
explicitly programmed. The studied items are presented to 
HDM as ACT-R chunks. HDM uses holographic reduced 
representations (Plate, 1995), a technique for instantiating 
and manipulating symbolic structure in high-dimensional 
vectors. To interface with ACT-R, HDM translates chunks 
into vectors, and vectors into chunks.

In HDM, a value is represented by a vector of n numbers 
randomly sampled from a normal distribution. These ran-
domly generated vectors are referred to as environment vec-
tors.  Any two vectors chosen at random in a high dimen-
sional space will tend to be approximately orthogonal. In 
HDM, angles indicate degrees of similarity. Orthogonality 
indicates complete dissimilarity. If we wanted to represent 
values with intrinsic similarity (e.g., brother and sister) we 
could choose non-orthogonal vectors, but for the purposes 
of modelling the fan experiment, we assume that the persons 
and locations are dissimilar.

In HDM, a slot is represented by a random permutation: a 
randomly selected reordering of a vector’s elements.  A slot-
value pair is represented by reordering the elements of the 
value vector by the slot permutation. 

Information storage in HDM is based on BEAGLE (Jones 
& Mewhort, 2007) and DSHM (Rutledge-Taylor et al., 
2014). HDM is a concept-based memory system. Rather 
than storing chunks per se, HDM stores relationships be-
tween concepts,  i.e., the values from an ACT-R chunk. Each 
concept is represented by two vectors: an environment vec-
tor econcept that represents the percept of that concept, and a 
memory vector mconcept that stores the relationship between 
that concept and other concepts.

As information storage in HDM differs from DM, so too 
does the process of retrieval. To recall from DM, DM is 
given a retrieval cue that is a description of a chunk and DM 
retrieves a chunk that matches that description. Conversely, 
in HDM, a cue is a question,  represented by a vector, and 
HDM retrieves the concept that best answers that question. 

A memory vector for a concept, mconcept, stores a list of 
questions to which HDM knows, from experience, that the 
concept is a candidate answer. When cued, that is, posed a 
question, HDM selects the memory vector with the greatest 
similarity to the cue and gives as answer the concept repre-
sented by that memory vector.

In Python ACT-R, a cue may contain the value question 
mark,  ‘?’, to indicate a ‘wildcard’,  that is, an unknown 
value. DM can retrieve more than one unknown value at a 
time because it is retrieving a complete chunk. Whereas in 
HDM, each unknown value requires a separate retrieval 
because HDM retrieves a value rather than a chunk (though 
we are open to the possibility that these retrievals could be 
performed in parallel). A chunk used as a cue for recall in 
HDM must contain exactly one ‘?’ to indicate the concept 
(i.e., value) that HDM should retrieve.

Memory Encoding and Recall with Slots
In HDM, there are two ways to structure knowledge corre-
sponding to the two kinds of chunk in Python ACT-R: lists 
of values or unordered lists of slot-value pairs. We first dis-
cuss storing unordered slots-value pairs in HDM.

To store in HDM the chunk “colour:red shape:square 
size:large”,  we update the memory vector for each concept 
in the chunk: mred, msquare, and mlarge. To update the memory 
vector for red, mred, we need to construct a vector represent-
ing the relationship between the concept red and all other 
concepts in the chunk and then add that vector to mred. In 
other words, we need to describe the set of questions for 
which red is an appropriate answer given “colour:red 
shape:square size:large” and add those questions to mred. 
Those questions are “What colour is it?”,  “What colour is 
the large thing?”, “What colour is the square?” and “What 
colour is the large square?”.

The question “What colour is it?” can be represented by 
the chunk “colour:?”,  “What colour is the large thing?” by 
the chunk “colour:? size:large”, and “What colour is the 
large square?” by “colour:? size:large shape:square”.

When the cue is translated into a vector, the ‘?’ becomes 
the placeholder (Jones & Mewhort, 2007). The placeholder, 
denoted by Φ, is a vector used to encode all associations 
and thus serves as a universal retrieval cue. The placeholder 
is randomly generated like an environment vector. Using the 
placeholder, the cue “colour:?” is translated into the vector 

Figure 1: Real versus simulated reaction times for 
the fan effect from Anderson’s (1974) data and 

Anderson and Reder’s (1999) ACT-R DM model.
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qcolour:? = (Pcolour Φ),  where Pcolour is the permutation repre-
senting the slot colour.

In holographic reduced representations (Plate, 1995), 
there are two ways of combining a pair of vectors to create a 
new vector: + vector addition and * circular convolution. An 
association between concepts is represented by convolving 
together the environment vectors representing those con-
cepts.  Addition is used to superimpose vectors representing 
separate information into a single vector.

The vector that represents the question “colour:? 
size:large” is (Pcolour Φ)*(Psize elarge), i.e., the placeholder 
permuted by colour and convolved with large permuted by 
size. This vector will only match the memory vectors of 
concepts that are colours associated with large objects.

By default, HDM allows for partial matching of cues to 
concepts in memory. To do so, HDM translates each cue 
into a set of questions: the question explicitly specified by 
the cue and all less specific variants of that question. The 
cue “colour:? size:large shape:square” is translated into a 
sum of vectors representing “colour:? size:large 
shape:square” and also “colour:?  size:large”, “colour:? 
shape:square”, and “colour:?”, calculated as follows:

qcolour:? size:large shape:square =
                      (Pcolour Φ) 
 + (Pcolour Φ)*(Psize elarge)

+ (Pcolour Φ)*(Pshape esquare) 
 + (Pcolour Φ)*(Pshape esquare)*(Psize elarge) 

Cues are used both to retrieve from memory and to add 
new knowledge to memory. When the chunk “colour:red 
size:large shape:square” is added to memory,  HDM updates 
mred, msquare, and mlarge as follows:

Δmred      = qcolour:? size:large shape:square
Δmsquare = qcolour:red size:large shape:?
Δmlarge   = qcolour:red size:? shape:square

Given a retrieval cue, HDM selects the memory vector with 
the greatest similarity to the cue’s vector and the cue’s 
chunk is returned to ACT-R with the ‘?’ substituted for the 
concept that the memory vector represents.

Similarity is measured by the cosine of the angle between 
vectors, which can be calculated as:

cosine(q, m) = (q • m) / ( (q • m)0.5 (q • m)0.5 )

where q  is a cue vector, m is a memory vector, and • is the 
dot product. The cosine is the dot product normalized by the 
magnitudes of the vectors.  A cosine of 1 means the vectors 
are identical and 0 means they are completely dissimilar. 
HDM uses DM’s retrieval time equation (Equation 2), but 
calculates activation as similarity measured by the cosine.

Vectors without Slots
Without slots,  relationships are indicated by the order of the 
values in the chunk. Convolution is commutative, a * b  = b 
* a, so the order is not preserved. To preserve the order we 
use Pbefore, a random permutation indicating that a vector 
occurred before another a vector. To add the chunk “large 

red square” to memory, we would update mred, msquare,  and 
mlarge. We would update mred as follows:

Δmred = (Pbefore elarge)*Φ
+ (Pbefore Φ)*esquare

 + (Pbefore ((Pbefore elarge)*Φ)*esquare

which adds the questions “large ?”, “? square” and “large ? 
square” to the memory of the concept of red.

Recognition with Holographic Declarative Memory
In the DM model of the fan effect, the activation of a chunk 
is calculated as a weighted sum of the association strengths 
of the chunk’s constituent concepts. In HDM, association 
strengths are measured by vector cosine, so we can calculate 
that activation in HDM as a weighted sum of cosines.

When determining whether HDM recognizes a cue, the 
cue chunk must contain no unspecified values ‘?’. For each 
value in the cue, HDM creates a new cue with that value 
substituted for ‘?’,  performing one retrieval for each value 
in the original cue. Activation is calculated as the mean of 
the cosines between each of these cues and the memory vec-
tor of the concept that was substituted out to create the cue. 
This method for calculating activations in the fan effect has 
been used before by DSHM (Rutledge-Taylor et al., 2014; 
Rutledge-Taylor, Pyke, West, & Lang, 2010).

In the fan effect task, for the cue “hippy park”, HDM does 
two retrievals,  “hippy ?” and “? park” with the vectors 
qhippy? = (Pbefore ehippy)*Φ and q?park = (Pbefore Φ)*epark. Acti-
vation A is calculated as:

A = 0.5 cosine(qhippy? , mpark) + 0.5 cosine(q?park , mhippy)

The HDM Model of the Fan Effect
We ran the HDM model of the fan effect task 20 times, 
simulating 20 virtual participants, and averaged across runs. 
Because each run uses a different set of random vectors, the 
cosines and reaction times vary randomly with each run. 
Anderson’s (1974) experiment had 18 participants. The 
model fits the human participant data reported by Anderson 
(1974) with a correlation of r = 0.91 (see Figure 2). The fit 
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Figure 2: Real versus simulated reaction times for the fan 
effect from Anderson’s (1974) data and the HDM model.
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was obtained using the exact same values for the fitting pa-
rameters as Anderson and Reder’s (1999) ACT-R fan effect 
model. The only change was to compute activation as a 
mean of cosines, as described in the previous section.

Anderson and Reder’s (1999) model and the HDM model 
are strongly correlated,  r = 0.99. While there are slight dif-
ferences in the predictions made by the two models,  both the 
DM and HDM models are within the range of human vari-
ability for performance on this task. These results show that 
HDM replicates DM’s ability to model the fan effect,  but 
HDM does so in a radically different way: by measuring the 
cosine between vectors in a high-dimensional space.

Why does the cosine model the fan effect so well? The 
cosine acts as an estimate of the conditional probabilities 
that the Anderson and Reder’s (1999) fan effect model uses 
to compute association strengths. The memory vector for a 
concept keeps a fuzzy count of the number of times that 
concept has co-occurred with each other concept.  Taking the 
dot product of the cue with a memory vector gives you an 
estimate of the frequency with which that cue has been 
added to that memory vector, that is, the number of times 
the relationships described in that cue have occurred with 
that concept. The cosine is a dot product normalized by the 
magnitudes of the vector, which in this case, is a frequency 
normalized by the total number of instances, that is to say, 
the cosine is roughly the probability.

We can imagine all vectors in HDM as points on a n-
dimensional hypersphere. For the HDM fan effect model, 
we used 256 dimensions, but for the sake of visualization, 
imagine a 3-dimensional sphere.

Let us first consider a fan of one. Suppose the model has 
learned only one fact about the hippy, namely, the “hippy is 
in the park”. After learning this fact, the memory vector for 
hippy will be mhippy = (Pbefore Φ)*epark. The model is later 
given the cue “the hippy is in the park” during the recogni-
tion phase. To test for recognition, we take the cosine of 
mhippy with the cue q?park = (Pbefore Φ)*epark.  As mhippy = q?park 
the angle between the cue and the memory vector is zero, 
the distance between them on the surface of the hyper-
sphere is zero, and the cosine is 1.00.

Let us consider a fan of two. If the model knows “hippy is 
in the park” and “hippy is in the bank”, then mhippy is the 
sum of the park cue q?park and the bank cue q?bank,

mhippy = (Pbefore Φ)*epark + (Pbefore Φ)*ebank

In high dimensional spaces, randomly chosen vectors are 
approximately orthogonal to each other.  Let us assume that 
the cues q?bank and q?park are perfectly orthogonal. As illus-
trated in the left half of Figure 3, on the surface of the hy-
persphere, mhippy will be halfway between the two cues at a 
45˚ angle. The cosine is 0.71.

Let us consider a fan of three. If the model knows that the 
hippy is in the bank, park, and store,  mhippy will be at an 
equidistant point on the hypersphere between the cues for 
bank, park,  and store. In the fan of three, mhippy is further 
away from all the cues than in a fan of two. The angle be-
tween mhippy and any cue is 55˚ and the cosine is 0.58.

Where f is the fan, the cosine between a cue and a mem-
ory vector is f -1/2 if the vectors are perfectly orthogonal, or 

approximates f -1/2 for the random vectors used by HDM. 
Thus HDM predicts that as the fan increases, the cosine 
decreases, but by diminishing amounts with each increase in 
fan. As the fan approaches infinity, the cosine approaches 
zero. HDM makes the intuitive prediction that increases in 
the fan has a steadily diminishing effect on reaction time, 
such that knowing 100 facts about the hippy is not apprecia-
bly different from knowing 101. 

The cosine in HDM approximates the square-root of the 
probability only when the events are equiprobable.  For n 
events with frequencies v1 to vn, the cosine of event i is

                       (3)

When given events of unequal probabilities,  HDM will be-
have as if the most frequent events are disproportionately 
likely and the least frequent events are disproportionately 
unlikely. This is a testable and possibly erroneous prediction 
of HDM. The quantum probability model of human judge-
ments (Busemeyer, Pothos, Franco, & Trueblood, 2011) also 
uses vector algebra to calculate probabilities, but uses the 
square-roots of the frequencies, then squares the cosine, 
such that Equation 3 is equal to classical probability. Using 
the square-roots of the frequencies is not possible for HDM 
as it would require HDM to know a priori how frequently 
each event will occur.

Future Work and Applications of HDM
We have presented in this paper an HDM model of the fan 
effect and compared it to Anderson and Reder’s (1999) DM 
model of the fan effect. However, we have only discussed 
fitting to the reaction time of targets,  sentences presented at 
the recognition phase that occurred in the study set. Ander-
son and Reder’s (1999) model for foils,  sentences that were 
not in the study set, fails on a variant of the fan effect task 
(West, Pyke, Rutledge-Taylor, & Lang, 2010). As the foil is 
difficult to model, we leave developing an HDM model of 
the foil for future research.

At present, HDM does not model recency effects,  that is, 
more recent information is not recalled better than less re-
cent information. However,  other holographic models in the 
literature (e.g., Franklin & Mewhort, 2015; Murdock 1993) 
can account for recency effects, so such a mechanism could 
be incorporated into the model.

q?park

q?bank

q?store

mhippy

Figure 3: mhippy with a fan of 2 (left) or 3 (right).
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At present, interfacing with ACT-R chunks imposes an 
information bottleneck on HDM. Detailed sensory informa-
tion cannot be feasibly stored in ACT-R chunks, but can be 
stored in holographic vectors (Kelly, Blostein, & Mewhort, 
2013). Reimplementing the entirety of ACT-R as a holo-
graphic system would improve ACT-R’s ability to interface 
with real world environments and to match situations to 
procedures. Some of that work has already been done: A 
holographic model similar to ACT-R’s procedural memory 
system already exists as the basal ganglia model of the 
SPAUN brain model (Eliasmith, 2013; Stewart, Bekolay, & 
Eliasmith, 2012). However, a holographic procedural mem-
ory consistent with HDM and ACT-R would necessarily 
differ from SPAUN’s to meet the demands of integration 
with a different architecture.

HDM is a powerful tool for cognitive modellers because 
it inherits the abilities of holographic models such as BEA-
GLE (Jones & Mewhort, 2007) and DSHM (Rutledge-
Taylor,  Vellino, & West, 2008) to store large quantities of 
data in memory and use it to make intelligent predictions in 
knowledge-heavy tasks. In Rutledge-Taylor et al. (2014) we 
show that DSHM can be used to model a difficult but small-
scale decision-making task. HDM could be applied to a 
large-scale, knowledge-driven decision-making task.

Conclusion
We present a new module for ACT-R, Holographic Declara-
tive Memory (HDM). We substitute HDM for DM in the 
ACT-R model of the fan effect and find that without chang-
ing any parameters HDM provides a good fit to the fan ef-
fect. We present an analysis that allows us to specify the 
mathematical relationship between the DM and HDM mod-
els of the fan effect.

HDM, by virtue of being a holographic model, has a 
number of capabilities for which DM is less suited,  such as 
analogical or case-based reasoning, learning associations 
between concepts without having association strengths set 
by the modeller,  and performing tasks that require large 
amounts of knowledge. We hope that by integrating a holo-
graphic memory model into ACT-R, we can bring the capa-
bilities of vector space modelling into the ACT-R research 
community and enhance the capability of the ACT-R cogni-
tive architecture to model human cognition.

Acknowledgments
This research is supported by an Ontario Graduate Scholar-
ship awarded to the first author and a grant from the Na-
tional Science and Engineering Research Council of Canada 
to the third author.

References 
Anderson, J. R. (1974). Retrieval of propositional informa-

tion from long-term memory. Cognitive Psychology, 6, 
451-474.

Anderson, J. R. (1991).  The place of cognitive architectures 
in a rational analysis.  In K. Van Len (Ed.), Architectures 
for Intelligence. Hillsdale, NJ: Erlbaum.

Anderson, J.  R., & Lebiere, C. (1998). The Atomic Compo-
nents of Thought. Mahwah, NJ: Lawrence Erlbaum Asso-
ciates.

Anderson, J. R., & Reder, L. M. (1999). The fan effect: New 
results and new theories.  Journal of Experimental Psy-
chology: General, 128, 186-197.

Busemeyer,  J.  R., Pothos, E. M., Franco, R., & Trueblood,  J. 
(2011). A quantum theoretical explanation for probability 
judgement errors. Psychological Review, 118, 193-218.

Eliasmith, C. (2013). How to build a brain: A neural archi-
tecture for biological cognition. Oxford University Press.

Eliasmith, C.,  & Thagard, P. (2001). Integrating structure 
and meaning: a distributed model of analogical mapping. 
Cognitive Science, 25, 245-286. 

Franklin, D. R. J., & Mewhort, D. J. K. (2015).  Memory as 
a hologram: An analysis of learning and recall. Canadian 
Journal of Experimental Psychology, 69, 115-135.

Gabor,  D. (1969). Associative holographic memories. IBM 
Journal of Research and Development, 13, 156–159. 

Jones, M. N., & Mewhort,  D. J.  K. (2007). Representing 
word meaning and order information in a composite holo-
graphic lexicon. Psychological Review, 114, 1-37.

Kelly,  M. A., Blostein, D., & Mewhort, D. J.  K. (2013). En-
coding structure in holographic reduced representations. 
Canadian Journal of Experimental Psychology, 67, 79-93.

Murdock, B. B. (1993). TODAM2: a model for the storage 
and retrieval of item, associative and serial-order informa-
tion. Psychological Review, 100, 183–203.

Longuet-Higgins, H. C. (1968). Holographic Model of 
Temporal Recall. Nature, 217, 104.doi: 10.1038/217104a0

Plate, T. A. (1995). Holographic reduced representations. 
IEEE Transactions on Neural Networks, 6,  623–641. 
Plate, T.  A. (2000). Analogy retrieval and processing with 
distributed vector representations. Expert Systems: The 
International Journal of Knowledge Engineering and Neu-
ral Networks, 17, 29-40. 

Rutledge-Taylor, M. F., Pyke, A. A., West, R. L.,  Lang, H. 
(2010). Modeling a three term fan effect. In D. D. Sal-
vucci & G. Gunzelmann (Eds.), Proceedings of the 10th 
International Conference on Cognitive Modeling (pp. 
211-216). Philadelphia, PA: Drexel University.

Rutledge-Taylor, M. F., Kelly,  M. A.,  West, R. L., & Pyke, 
A. A. (2014). Dynamically structured holographic mem-
ory. Biologically Inspired Cognitive Architectures, 9,  9-
32.

Rutledge-Taylor, M. F., Vellino, A., & West, R. L. (2008). A 
holographic associative memory recommender system. In 
Proceedings of the 3rd International Conference on Digi-
tal Information Management (pp. 87-92). London, UK.

Stewart,  T. C., Bekolay, T., and Eliasmith, C. (2012) Learn-
ing to select actions with spiking neurons in the basal 
ganglia. Frontiers in Neuroscience, 6:2, 1-14.

West, R. L., Pyke, A. A., Rutledge-Taylor, M. F., & Lang, H. 
(2010). Interference and ACT-R: New evidence from the 
fan effect.  In D. D. Salvucci & G. Gunzelmann (Eds.), 
Proceedings of the 10th International Conference on 
Cognitive Modeling (pp. 277-281). Philadelphia, PA: 
Drexel University.

153


