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Abstract

This paper explores the role of spontaneous retrieval in
prospective memory, in an agent implemented in the Soar
cognitive architecture. At goal initiation time, spreading
activation causes the goal to be the most activated element in
long-term memory, at which point it is spontaneously retrieved
into working memory and pursued. We show that goal encoding
specificity increases prospective memory performance, while
a lengthier retention interval decreases performance if the
percepts are differentially presented; both trends qualitatively
resemble results described in psychology literature. However, a
large space of possible spontaneous retrieval implementations
remain unexplored, and much work remains to be done before
spontaneous retrieval in a cognitive architecture can be fully
understood.
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Introduction
Prospective memory is the ability to remember to do some-
thing in the future, often while other activities are being
performed during the delay. Such tasks are common in
everyday life: from passing a message to a colleague, to taking
medication before bed, these tasks all require the subject to
perform particular actions (giving the message, swallowing a
pill) under particular conditions (when the colleague is in sight,
at bedtime). One of the main research questions in prospective
memory is how people recall that they have an action to
perform when the goal conditions are met. Two general
classes of strategies have been suggested: monitoring, where
someone deliberately checks if the conditions are satisfied, and
spontaneous retrieval, where the need to act somehow “pops”
into mind. Cognitive architectures are well-suited to create
models of monitoring, since agents created in that framework
have fine deliberate control over the use of memory. The same,
however, cannot be said of spontaneous retrieval strategies, as
they require automatic memory mechanisms, which have thus
far received little attention in cognitive architectures.

This paper presents a preliminary exploration of the
use of spontaneous retrieval for prospective memory. We
implemented an automatic, uncued, activation-based retrieval
mechanism in the Soar cognitive architecture, and demonstrate
that the mechanism provides agents with a robust prospective
memory ability. In an abstract domain that presents agents with
randomly-generated goal conditions, the use of spontaneous
retrieval allows the agent to achieve its prospective goals
across a wide range of environmental and agent parameters.
Furthermore, the performance of the agent changes with

encoding specificity and retention interval length in ways that
qualitatively resemble those of people. This serves as one
step in building a complete model of how people perform
prospective memory tasks, and the factors that must be taken
into consideration when selecting between strategies.

Background
Prospective Memory
Although prospective memory has gotten increasing attention
from psychologists in the last twenty years, the capability is
only defined as a “fuzzy set” of intuitions around “remember-
ing to do something at a particular moment (or time period)
in the future” (emphasis in original) (McDaniel & Einstein,
2007). For clarity, we define a prospective memory task as
represented by the target — the conditions under which the
goal is applicable — and the action, which the agent must take
to achieve the goal. Within this framework, previous literature
has identified the five stages of completing a prospective
memory task (Ellis, 1996). To use message-passing as an
example, the stages are:

Encoding The goal is created and stored in long-term
memory; this occurs when the message is given to the agent
and asked to be passed on to the colleague.

Retention This stage is the delay between the storage of
the goal and when the target conditions are met, such as
between when the message was received and when the
colleague is seen.

Initiation The target conditions of the goal are fulfilled, and
the goal must be retrieved from long-term memory to
working memory. In the example, the colleague is in sight.

Execution The action of the goal is taken; in this case, the
colleague is given the message.

Completion Long-term memory must be changed such that
the goal will not be repeated; that is, when the colleague is
next seen, another attempt to pass on the message would
not be made.

The crux of prospective memory is during the initiation
stage, which hides a knowledge dependency problem (Li &
Laird, 2013a). Since people cannot directly act on knowledge
in long-term memory, the goal must be retrieved for the sight
of the colleague to be considered significant; at the same
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time, since retrieval from long-term memory can only be done
deliberately, the goal is not retrieved without a recognition of
significance in the first place.

The psychology literature identifies two classes of human
strategies to avoid this dependency problem. The first is mon-
itoring, which is characterized by the continual expenditure
of attentional resources (Smith & Bayen, 2004); this can be
modeled by the agent periodically retrieving and checking
the relevance of goals that are related to its current situation,
what is called a preemptive strategy in prior work (Li &
Laird, 2013b). This class of strategies breaks the dependency
cycle by retrieving goals without determining their relevance.
The second category of strategies breaks the cycle the other
way, by removing deliberation in the retrieval of goals; these
require the long-term memory system to signal the agent in
some way. One possibility is to signal that there is a relevant
goal to prompt a deliberate memory search (what is called a
noticing-plus-search strategy), while an alternative is to have
the knowledge of the goal be spontaneously retrieved into
working memory (a true spontaneous retrieval strategy).

These two classes of strategies are not mutually exclusive,
but complimentary. Although early work on prospective
memory debated whether monitoring or spontaneous retrieval
is the better description of human behavior, recent work has
shifted towards determining the factors that influence which
strategy is used for a particular prospective memory task
(Einstein et al., 2005). Monitoring strategies are preferred
when the goal conditions are non-focal or when the goal is
important, while spontaneous strategies are preferred when
the delay is long, when working memory resources are low,
or when the interim task is cognitively demanding (McDaniel
& Einstein, 2007). This suggests that spontaneous retrieval
is more effective than monitoring at completing prospective
tasks when these properties are present in the environment and
the goal. Both strategies are also affected by the encoding of
the goal which, following the encoding specificity principle,
must match the percepts at the time of initiation (Einstein &
McDaniel, 2010).

Although computational models of prospective memory
have been built, they tend to sidestep initiation and focus
on retrieving the correct goal from long-term memory. One
model explored the Intention Superiority Effect (ISE), which
states that unachieved goals are retrieved more quickly than
achieved goals (Lebiere & Lee, 2002). Another model looked
at different accounts of finding the correct goal, and correlates
the timing results to human data (Elio, 2006). Crucially, both
models assume that the agent knows that a goal must be
retrieved, while the difficulty of the initiation stage lies in how
that fact is recognized. Since both models require deliberate
use of memory, they more closely resemble monitoring
strategies. Modeling spontaneous retrievals would require an
automatic memory mechanism, which is discussed below.

Spontaneous Retrieval
Spontaneous retrieval from long-term memory has been
acknowledged since the first studies of memory (Ebbinghaus,

1913). In contrast to deliberate or voluntary retrieval, which
requires executive functions for search control, spontaneous
retrieval is an associative process that requires little to no
cognitive effort, often resulting in memories that overlap in
features with the current situation (Berntsen, 2010). There is
often a distinction between retrieval from semantic memory
(i.e., retrievals of facts) and retrievals from episodic memory
(i.e., retrievals of experiences) (Kvavilashvili & Mandler,
2004; Berntsen, 2008); although it is possible for prospective
memory to use either mechanism, here we focus on retrievals
from semantic memory.

Computationally, designing a spontaneous retrieval mech-
anism requires answering two questions: When is a memory
retrieved? And which memory is retrieved? The answers to
these two questions define a space of spontaneous retrieval
mechanisms, a more thorough exploration of which can be
found elsewhere (Li & Laird, 2015). Here we only note that
there are additional constraints on the second question, namely,
that the retrieved memory should be relevant to the current
situation. In most cognitive architectures, retrieval from long-
term memory requires a description of the features of the
desired memory element. This description ensures that the
retrieved element can be used for further reasoning. With
spontaneous retrieval, however, the agent cannot deliberately
create this description; a different mechanism for ensuring
relevance must be used. One solution is to use a spreading
activation mechanism, such that the knowledge in working
memory influences which long-term memory elements are
highly activated and are thus more likely to be retrieved. Again,
the full space of spreading activation mechanisms is beyond
the scope of this paper.

Implementation in Soar
Soar (Laird, 2012) represents all declarative knowledge as
edge-labeled directed graphs. Knowledge in working memory
is matched by procedural if-then rules, which in turn modify
working memory. In addition to buffers that represent the
perceptual input and motor output of the agent, working
memory also contains buffers that allow agents to access
long-term memory. In particular, a Soar agent can store a
single element (a graph node plus all its outgoing edges)
into semantic memory. Before the current work, the only
mechanism for retrieval from semantic memory was for the
agent to (deliberately) create a cue — a set of features of
the desired memory element. Semantic memory then finds
all elements that contains the entire set of features, and then
places the element with the highest activation into working
memory. This semantic memory element activation is boosted
when the element is stored or is the result of a retrieval (similar
to ACT-R), and decays over time as controlled by a decay rate
parameter.

Spontaneous retrieval extends the capabilities of Soar’s se-
mantic memory. From the perspective of the agent’s interface
to memory, the biggest change is that whenever there is no
deliberate retrieval, semantic memory automatically selects
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an element to be placed into the semantic memory buffer. As
with the bias from deliberate cued retrieval, semantic memory
selects the most highly activated element, with the caveat that
it skips over any element that is already in working memory;
this ensures that spontaneous retrieval is not attempting to
retrieve knowledge that the agent has already retrieved.

To ensure that the spontaneously retrieved memory is
relevant, spreading activation is used to boost the activation
of elements related to the contents of working memory. Our
implementation of spreading activation is different from the
spreading activation in ACT-R (Anderson, 2007). In the latter,
spreading is only a term in determining the bias for retrieval,
but has no long-term effect on a long-term memory element’s
base-level activation. This is undesirable, since this means
spreading is ahistoric — spreading makes an element more
likely to be retrieved at this current time step, but has no effect
on whether it is likely to be retrieved at the next time step.

Instead, we created a spreading activation mechanism that
directly changes base-level activation. The mechanism is
defined by two parameters: what triggers the initial activation
boost occurs, and which elements are affected by the spread.
This strictly subsumes the original activation mechanism of
Soar, which can be cast as a “spreading” mechanism in which
the initial boost is triggered by long-term memory storage
and retrieval, and in which no other element is affected.
Additionally, we added a third trigger: whenever a rule puts a
long-term memory element into working memory, that element
also receives an activation boost. In effect, this allows input
percepts to cause changes in long-term memory activation.
Whereas before only the element itself is boosted, now all
graph-neighbors of that element, and the neighbors of those
elements and so on, also receive a boost in activation, to some
parameterized depth d. Note that these boosts are identical, as
though those elements were themselves retrieved into working
memory. This is not ideal — a boost which decreases with
distance may be more intuitive — but it serves as an initial
attempt at a useful spontaneous retrieval mechanism.

Given this mechanism, a Soar agent that uses spontaneous
retrieval for prospective memory works as follows:

Encoding The goal and its targets and actions are stored into
semantic memory. The goal receives a boost in activation
as a result, but this has little impact on its retrieval later.

Retention The goal is forgotten from working memory. The
semantic memory activation of the goal also decays, but
remains retrievable. When external percepts coincidentally
(partially) overlap with the target, the goal will receive a
boost in activation due to spreading, but in general, the
activation of the goal is low, and is not spontaneously
retrieved. Even if the goal is spontaneously retrieved, the
agent will discover that the goal conditions are not met, and
the goal is ignored.

Initiation At initiation time, all the goal target conditions
are matched. Each individual condition causes a boost
in the activation of the goal; together, these significantly

Figure 1: An example random knowledge hierarchy. See text
for description.

increase the goal’s activation, causing it to be spontaneously
retrieved. A rule then matches the retrieved goal, which
verifies that the conditions of the goals are satisfied. The
agent can then choose to pursue the goal.

Execution The action of the goal is then performed.

Completion Finally, once the goal is fulfilled, the agent
removes the goal from semantic memory. The goal will
never be spontaneously retrieved, and the agent never
pursues that instance of the goal again.

Crucially, this strategy requires the goal to be within
spreading distance of the agent’s perceptions. This may not
always be the case — the conditions of the goal may be
described in abstract terms that do not directly correspond
to perception. There are several ways to prevent this from
occurring. One possibility is to increase the depth limit of
spreading activation; due to the branching factor of semantic
memory, however, this is exponentially costly. Another
possibility is for the agent to encode the goal such that the
conditions more closely match perceptual input; in other
words, to increase encoding specificity. Finally, the agent may
also have additional rules that elaborate on perceptual input
(elaboration rules), building up to to the goal conditions; in
essence, this is generalizing the percepts, and can be thought
of as the flip side of encoding specificity. As we demonstrate
below, these three factors are not independent, and together
they determine whether the goal is boosted and retrieved.

Prospective Memory Domain
In order to evaluate the use of spontaneous retrieval for
prospective memory, a domain was created that represents
prospective memory tasks in the abstract.

To simplify our analysis, we restrict our work to where
the structure of knowledge in long-term memory forms a
recognition hierarchy, or equivalently an ontology with only
has-a relations. For example, the agent may recognize that
an object with four legs and a back is a chair, and that because
there are multiple chairs and multiple tables, that the location
is a classroom. For this domain, we randomly generate such
hierarchies from the bottom up, where the creation of each
lower-level feature has a probability of resulting in a feature
one level up. This process continues until a specified number
of features at a specified height is created; for example, Figure
1 shows a hierarchy of width 2 and height 3. Note that the
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hierarchy is not a connected graph: lower-level features may
not be part of any higher-level feature.

Within the prospective memory domain, the knowledge
hierarchy determines both the target conditions of goals and
the percepts of the agent. The only input the agent perceives is
from the lowest level of the hierarchy, while a subset of higher
nodes are designated as goals. For example, in Figure 1, if
the square node is a goal, then the agent should perform the
goal action when all the percept-level descendants of that goal
are perceived (shaded). To generate a particular trial for the
agent, the percepts for goals are first inserted into the percept
sequence, with the remaining percepts interpolated using a
noisy random walk.

Before each trial, the knowledge hierarchy is inserted into
the semantic memory of the agent, but without knowledge of
which features are the goals. At each time step, the agent is
presented with features from the lowest level of the hierarchy,
on which elaboration rules would match to create higher-level
features. In addition to percepts, the agent is also presented
with goals and their features (if the goal is the square node
in Figure 1, its features are the diamond-shaped nodes). It
is up to the agent to store the goal into memory, where it
may also encode the goal more specifically by expanding
the intermediate-level features into percept-level features (for
example, linking the goal with the shaded nodes instead).

Within this domain, we are interested in the proportion
of prospective memory tasks completed by an agent using a
spontaneous retrieval strategy. We are interested in several
environmental and agent parameters:

• (*) The specificity of encoding by the agent.

• The maximum spreading depth in semantic memory.

• The highest level of perceptual elaboration.

• (*) The length of the retention stage.

• The average number of conditions in a goal.

• The decay rate of semantic memory.

The parameters marked with asterisks are known to have an
effect on human prospective memory. For encoding specificity,
it is expected that prospective memory performance increases
when the goal encoding matches that of percepts. As for the
length of the retention stage, the longer the interval, the more
likely that a spontaneous strategy is chosen. It is assumed that
this is due to the increased cost of monitoring for long periods,
but that does not preclude the possibility of spontaneous
retrieval performance also changing as a function of this
parameter.

Results
In general, spontaneous retrieval provides a robust prospective
memory ability, allowing an agent to complete an average
of 81.5% (and a median of 90%) of its goals across a range
of parameter settings. We examine the effects of encoding
specificity and retention interval length below.

Encoding Specificity
Encoding specificity, in this case, refers to the target conditions
of the goal that is stored in long-term memory. Instead of
directly storing the features of the goal, the agent instead stores
the goal with its lower-level features; in Figure 1, this means
the goal (the square node) is stored with the shaded nodes
as its conditions instead of the diamond-shaped nodes. This
encoding means the goal is now connected to the knowledge
hierarchy at a lower level than it would be otherwise. Since the
goal is often at the top of the knowledge hierarchy, we denote
the specificity of an encoding by how many levels below the
goal it is linked to; in this example, the encoding specificity
would be 2.

Given this definition of encoding specificity, we perform
initial analysis to determine whether a goal could be sponta-
neously retrieved. For goal at knowledge level g, elaboration
rules that create features up to level e, and a spreading depth of
d, the goal must be encoded at specificity level s that satisfies
the following relationship:

d ≥ g− e− s+1 (1)

That is, the spreading depth must be able to reach from the
highest-level elaborated features to goal conditions (plus an
extra level to spread from the conditions to the goal itself).
Note that the agent cannot complete any goals when d = 0,
since the goal would never receive an activation boost from
spreading (since no spreading occurs). We can additionally
calculate the maximum number of boosts a goal will receive,
assuming the knowledge hierarchy has branching factor b:

min(g, s+d−1)

∑
i=max(1, s−d+1, g−e)

bi (2)

That is, every feature in the levels indicated by the index
would boost the goal, a number which is exponential in the
branching factor. This classification allows us to group agents
across a large parameter space for comparison. The results
here are from exploring 1≥ g≥ 3, 0≥ e≥ 3, 1≥ s≥ 3 and
with d ∈ {1,2} and branching factor of 3.

A number of parameter settings within this space fail in
completing any goals. Upon closer examination, these are
settings where the goal is at least two steps away from the
elaborated features — for example, if elaborations provide
features of level 3 and the goal conditions are encoded at
level 4, thus requiring a two-level spread from elaboration
to condition to the goal. Equivalently, this is when e+ s <
g, or where the right hand side of Equation (1) is two or
more. In these cases, the lower-level features are activated
more frequently, causing them to have higher activation than
the goal and preventing the goal from being retrieved. This
suggests that the activation boosting of a goal is not sufficient
to guarantee its completion.

All other parameter settings allow the agent to complete
goals. The parameter that is most correlated with higher
performance is the specificity of the encoding: every increase
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in specificity results in a higher proportion of goals being com-
pleted. The results in the table below are typical; the numbers
represent the proportion of goals that the agent completed. In
retrospect, this is not surprising: more specifically encoded
goals are linked to more features, which means that there are
more opportunities for the activation of the goal to be boosted.

Table 1: Representative results demonstrating the effects of
encoding specificity. The numbers reported are the proportion
of goals completed.

Elaboration Encoding Specificity
Level 1 2

0 0% 75%
1 70% 80%
2 65% 80%
3 65% 80%

Neither the level of elaboration nor the depth limit for
spreading activation have uniform effect on the agent’s
performance. Although these parameters also effect the
number of times a goal is boosted, the problem is that they
also boost the activation of all other goals in addition to the
goal that is being initiated. As with the low-level features from
above, it is a high relative activation that allows a goal to
be spontaneously retrieved. More specific encodings provide
a large enough boost at initiation for the single goal to be
retrieved, while these other parameters do not.

Overall, these results agree with the psychology literature:
the best goal encoding should match both environmental
parameters (such as how abstract the goal is) and agent
parameters (such as the limit to spreading activation), but that
more specific encodings in general lead to better performance.

Retention Interval
In our initial experiment, none of the retention interval length,
the decay rate of semantic memory, nor the number of goal
conditions had any individual effect; whether a trial lasts 2,000
or 10,000 time steps, or have between 1 and 20 conditions, the
agent performs equally well. Learning from the experiments
with encoding specificity, however, we suspect that this is due
to the “density” of percepts to goals. The features that an agent
perceives during the retention interval are randomly selected,
and may coincidentally be one of the conditions for a goal;
that goal would then receive a small boost in activation. Since
all percepts are equally likely, all goals would receive roughly
equal numbers of activation boosts, meaning no single goal
is particularly highly activated (or particularly un-activated
either).

We can frame this idea into one of “resting activation” —
activation that a goal would have during the retention interval,
which is determined by an equilibrium formed by the increase
in activation due to spreading from random input and the
decrease in activation due to decay. Changes in either would
move the resting activation value; if the decay rate is increased,

or if there is less activation from random input (as would be
the case if the input did not contain target conditions at all),
the resting activation value would decrease. Again, it is not
the resting activation that directly determines the performance
of the agent, but the relative activation of a goal at initiation
time; this is why the decay rate has no effect, since it affects
the activation of all goals. Conversely, if a goal has low resting
activation compared to other goals, the activation spread from
its target conditions may not be sufficient to make it the most
activated element, preventing its spontaneous retrieval.

To demonstrate this, we modified the domain such that
during the retention stage, the conditions of a single goal are
never presented to the agent until initiation. We call this the
Leave One Out percept sequence, as opposed to the Normal
percept sequence. For that goal, there should be much less
activation boosts from spreading as compared to other goals,
leading to a lower resting activation level. In this case, a longer
retention length (as activation decays after the goal is initially
stored) should leave the goal uncompleted.

As expected, the Leave One Out sequence results in much
more variance in the activations of goals. The least activated
goal in a Normal percept sequence is 1.44 standard deviations
away from the mean, while with a Leave One Out sequence,
the least activated goal is 12.1 standard deviations away (the
standard deviations were calculated without the outlier). This
leads to the goal not being retrieved for completion as the
retention interval increases, as show in the table below:

Table 2: The effect of different percept sequences. The
numbers reported are the proportion of goals completed.

Mean Retention Interval Sequence Type
(time steps) Normal Leave One Out

105.7 96.7% 58.3%
125.0 96.7% 55.0%
142.7 97.5% 50.0%
166.2 96.7% 50.0%
194.1 97.5% 43.8%
214.0 96.7% 38.3%
246.3 97.6% 37.6%

This result could be interpreted in two ways. On one
hand, for random percepts, using spontaneous retrieval for
prospective memory suffers no degradations in performance,
which suggests that it may be preferable to monitoring
strategies. On the other hand, goals for which the conditions
are never encountered outside of initiation are unlikely to be
retrieved under the current mechanism, which run counter
to the trends described in psychology literature. We do not
know of any studies which look at the baseline frequencies
of goal conditions, nor of studies which examine human
prospective memory performance where performing the goal
require satisfying multiple disjoint conditions. It is possible
that human performance exhibit similar patterns under such
situations; alternately, a better model may be a hybrid
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strategy where occasional monitoring-like retrievals prevent
the activation of any goal from dropping too low.

Discussion and Conclusion
This paper presented a strategy for completing prospective
memory tasks, by using spontaneous retrieval to bring the
goal into working memory at the right time. This strategy
proves robust across a number of parameters. In particular,
the change in performance over two parameters qualitatively
matches human data: the increased performance when the goal
is encoded more specifically, and the decreased performance
when the retention interval is lengthened (where the conditions
of the goal are presented differentially). These results crucially
depend on the idea that the goal must have higher relative
activation compared to other knowledge in order for the
prospective memory task to succeed. This explains why other
memory parameters have no effect, as they alter the activation
of all goals on an absolute scale, but leave relative differences
unchanged.

At the same time, a major shortcoming of this work is
the unexplored space of both the spreading activation and
spontaneous retrieval mechanisms, as well as in the structure
of knowledge in memory. These results only hold when
spontaneous retrieval is based on activation, when spreading
activation has a hard limit on depth, and when long-term
memory is a hierarchy. It is easy to imagine alternatives: where
spontaneous retrievals are based on analogical mapping, where
the size of the activation boost decays over graph distance as
it spreads, or where long-term memory is a more complicated
graph. None of these parameters can be easily enumerated and
tested, and each requires significant evaluation on its own to
determine the conditions under which they best match human
data or are most useful to artificial agents.

Spontaneous retrieval is an important mechanism for
cognitive architectures: it is necessary to fully model human
prospective memory, and it also serves as a heuristic for when
memory-search guidance knowledge is lacking in artificial
agents. While this work is one step in understanding such
a mechanism, much work remains to be done, and given
that many algorithmic details affect the utility of spontaneous
retrieval, these effects may be better explored using simpler
models before being implemented in a cognitive architecture.
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