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Abstract 

Surprise is a ubiquitous phenomenon that is implicated in 
many areas of cognition, from learning, to decision making, 
to creativity. For example, it has recently been proposed as a 
trigger for learning in robotic agent architectures. This paper 
describes a novel cognitive model of surprise based on the 
idea that surprise is fundamentally about explaining why the 
surprising event occurred; events that can be explained easily 
are less surprising than those that are more difficult to 
explain. Using explanations that people have produced, this 
surprise model builds a directed graph of explanations that 
link the setting and outcome of a given scenario, and uses this 
graph to predict surprise ratings. Simulations are reported 
which show that the model’s performance corresponds 
closely to the psychological evidence, as measured by 
people’s ratings of different surprising scenarios. 

Keywords: surprise; explanation; cognitive; judgments 

1. Introduction 

The phenomenon of surprise has been intensively 

researched since Darwin’s time, perhaps because it involves 

an interesting mixture of emotion and cognition. Though 

surprise clearly involves an emotional reaction (often 

accompanied by a startle response), it also seems to serve a 

strategic, cognitive goal, as it directs attention to explain 

why the surprising event occurred and to learn for the future 

(e.g., Ranganath & Rainer, 2003). Originally conceived of 

as a “basic emotion” (e.g., Darwin, 1872; Ekman & Friesen, 

1971; Izard, 1977; Tomkins, 1962), more recently surprise 

has been re-appraised as a cognitive state because, unlike 

most emotions, it can be either positively or negatively 

valenced (Ortony & Turner, 1990).  

In Artificial Intelligence, Macedo, Cardoso, Reisenzein, 

Lorini, and Castelfranchi (2009) have argued that any agent 

operating in a changing and imperfectly known environment 

needs a surprise mechanism to survive. Specifically, 

surprise is considered an essential requirement in robotic, 

agent architectures to identify learning events (e.g., Macedo, 

Reisenzein, & Cardoso, 2004).  

In Cognitive Psychology, theories of surprise fall into two 

identifiable camps, the “expectation” and “sense-making” 

approaches. Expectation theories focus on the properties of 

surprising outcomes, characterizing them as low-probability 

events, disconfirmed expectations, schema-discrepant 

events or events of contrasting probabilities (e.g., Meyer, 

Reisenzein, & Schützwohl, 1997; Reisenzein & Studtmann, 

2007; Teigen & Keren, 2002, 2003). Sense-making theories 

stress the importance of understanding and integrating the 

surprising event, a task often carried out retrospectively 

rather than predictively (e.g., Kahneman & Miller, 1986; 

Maguire, Maguire, & Keane, 2011). While this theoretical 

opposition is real, they may actually be complementary, 

addressing different classes of events (see section 1.1). 

The current paper focuses on sense-making aspects of 

surprise, where the sense-making process is cast as 

explanation formation; people’s perception of surprise is a 

metacognitive estimate of the cognitive work involved in 

explaining a surprising event (see Foster & Keane, 2013). 

Stated simply, some surprises are more surprising because 

they are harder to explain. Though both are surprising 

events, it is more surprising to hear that an X-Factor teen 

contestant has died, than it is, unfortunately, to hear that 

Amy Winehouse has died (given her pre-history of 

substance abuse), because the former is harder to explain 

than the latter (although, as surprise is a subjective 

experience, this can depend on the individuals level of 

knowledge surrounding each event). Traditionally, 

explanation is seen as playing a role in building causal 

models or predictive schemas to deal with future events 

(Heider, 1958; Lombrozo & Carey, 2006). However, apart 

from having a predictive role when a new situation is 

initially encountered, explanation may also serve to help 

people decide how information should be weighted or how 

attention should be allocated, as events occur (Keil, 2006). 

In the remainder of this section, before presenting our model 

of surprise, we briefly consider broad categories of 

surprising events, and previous models proposed from 

probabilistic and sense-making perspectives. 

1.1 Categories of Surprising Events 

The theoretical division between expectation and sense-

making accounts of surprise may reflect a different 

emphasis on two broad classes of scenario. Some scenarios 

invite the formation of definite expectations, whereas others 

do not. For example, if a coin is tossed in the air, it is 

reasonable to develop the expectation that it will come down 

as either heads or tails. If someone is running a race, it is 

reasonable to develop expectations that they will win (or 

lose). However, if you are sitting at home watching TV, you 

are unlikely to develop the expectation that a rock will come 

through the window. If you are watching a teenage X-Factor 

contestant singing on TV, it is not reasonable to develop the 

expectation that they will die an hour from now. Indeed, 

many everyday scenarios are probably ones in which people 

do not generate expectations for every possible outcome of 

the scenario before-the-fact. As Ortony and Partridge have 
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noted: “It is not realistic to suppose that a system with goals 

and tasks to perform is at the same time randomly spawning 

inferences about unrelated and improbable possibilities” 

(p.107, 1987).  

As we shall see in the following sections, this distinction 

between two broad classes of surprising event – those that 

are prior-expectation-inviting and those that are not prior-

expectation-inviting – is important, as the latter present 

specific issues for probabilistic accounts that do not arise for 

sense-making interpretations of surprise. 

1.2 A Probabilistic Model of Surprise 

Most of the existing computational models of surprise are 

framed from the expectation-disconfirmation perspective 

rather than the sense-making one (see, e.g., Bae & Young, 

2008; Lorini & Castelfranchi, 2006, 2007; Macedo & 

Cardoso, 2001; Macedo et al., 2004; Baldi & Itti, 2010). For 

example, Baldi and Itti’s (2010) Bayesian theory of surprise, 

mathematically defines surprise as the effect that an event 

has on an observer; specifically, surprise is defined as the 

distance between prior and posterior belief distributions (see 

also Itti & Baldi, 2006, 2009). They have shown this theory 

of surprise to work well in predicting human gaze by 

computing surprise over images and video stimuli in a 

computer vision system using a neural network architecture. 

However, Itti and Baldi (2009) note that a consistent 

definition of surprise (using a Bayesian framework), must 

involve prior and posterior distributions to capture 

subjective expectations. So, for this theory prior beliefs (i.e., 

expectations) necessarily need to be computed so that the 

change between prior and posterior belief distributions can 

be calculated. As such, the theory cannot account for 

instances of surprise in which expectations are not 

computed in advance.  

Many other probabilistic models recognize that this 

“missing-expectations problem” needs to be addressed. For 

instance, Bae and Young (2008) employ the notion of 

postdictability in their model of surprise in narratives. That 

is, often in a narrative there is a “hidden truth” revealed at 

the end of a story that resolves some surprising event, where 

this resolution essentially involves an after-the-fact 

explanation step. Similarly, Macedo and Cardoso (2001; 

Macedo et al., 2004) draw on both the cognitive-

psychoevolutionary model of surprise and Ortony and 

Partridge’s (1987) distinction between active and passive 

expectations to model surprise. Passive expectations are 

those that cause the agent to be surprised after-the-fact; 

cognitive attempts to retrospectively construct what they 

could have expected to happen. However, they still rely on 

expectations, and, as such, are distinct from more sense-

making, explanation-based proposals for surprise. 

At present, it is not wholly clear how the missing-

expectation problem might be best handled within the 

probabilistic framework. What can be said is that, at the 

very least, it requires some “retrospective machinery” to 

recover what expectations should have been adopted, after-

the-fact. As we shall see, these issues do not arise for sense-

making accounts, as they fundamentally operate in a 

retrospective way; they typically see surprise as a process of 

resolving some inconsistency after the event occurs. 

1.3 A Sense-Making Model of Surprise 

We know of only one fully-implemented computational 

model adopting the sense-making perspective; that 

developed by Maguire, Costello and Keane (2006), based on 

Grimes-Maguire and Keane’s (2005) theory of 

Representation-Fit (see also Maguire et al., 2011). It 

conceptualizes surprise as a representation-fitting process of 

integrating surprising events with existing schemas, as 

opposed to a process of expectation disconfirmation. Their 

model consists of two parts: an integration stage and an 

analysis stage, utilizing many ideas from Connell and 

Keane’s (2006) Plausibility Analysis Model (PAM). The 

integration stage links each event in a scenario with those 

that have happened already so that a current, coherent 

representation is formed, and a total incoherency score for 

the scenario is created, based on the ratio of linked concepts 

to unlinked concepts. Then, the analysis stage involves a 

systematic assessment of this representation; calculating the 

surprise for a given event. For this assessment, the model 

detects factors that are both directly supportive of the 

surprising event, and those that are vaguely supportive of it. 

Using WordNet (cf. Miller, 1995) as a foundation for their 

knowledge base, they showed this model of surprise to be 

consistent in predicting people’s surprise ratings for a series 

of short stories with predictable, neutral, and unpredictable 

outcomes. However, this approach could, possibly, be 

linked with an expectation account, as degree-of-expectation 

could be seen as a function of this incoherency score. 

Having reviewed the main issues in previous theories and 

models of surprise, in the remainder of the paper we 

advance a new sense-making model, the Explanatory 

Analysis Model of Surprise (EAMoS) based on Foster and 

Keane’s (2015) Metacognitive Explanation-Based (MEB) 

theory of surprise. Like Maguire et al.’s (2006) model, the 

present model focuses on several studies of surprise in 

discourse (see Maguire et al., 2011; Foster & Keane, 2013, 

2015). Hence, before presenting the model, we briefly 

review this empirical evidence. 

2. Recent Evidence on Surprise  

There is now a considerable body of empirical work on 

aspects of surprise in discourse (e.g., Grimes-Maguire & 

Keane, 2005; Gendolla & Koller, 2001; Maguire et al. 2011; 

Foster & Keane, 2013). This work makes use of simple 

stories describing surprising events, presented to people 

before asking them to judge the surprisingness of the 

outcome. So, for example, for the story in Table 1, people 

would typically read the key sentences one at a time, before 

being shown the outcome and asked to rate its 

surprisingness. This research has revealed several 

interesting aspects of surprise behavior. For instance, Foster 

and Keane (2013) have recently shown that some surprising 

events may be “known” or “less-known”; that is, some 
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surprising events may have “ready-made” explanations for 

them, whereas others do not (see also Schank, 1986). 

Imagine, one day you are walking home and discover that 

your wallet is missing from the pocket of your jeans. You 

would be surprised, but also have some ready explanations 

for what might have occurred (e.g., “Could it have been 

robbed?”, “Might I have dropped it?”). Now, imagine you 

are walking home and discover that your belt is missing 

from the waist of your jeans. Again, you would be 

surprised, but few explanations present themselves (the only 

one we could think of, eventually, was leaving one’s belt in 

the security area at the airport). So, here, a small change in 

the object mentioned in the outcome (i.e., wallet or belt) 

subtly changes the activated knowledge, altering the ease 

with which the surprise is resolved. 

 

 
 

Figure 1: Mean surprise judgments across scenarios for both 

levels of Outcome-Type (known vs. less-known) (Foster & 

Keane, 2013, Experiments 1 & 2) with standard errors. 

 

Foster and Keane (2013) operationalized this known/less-

known dimension for these story materials using (i) a pre-

test sorting task by an independent group of participants and 

(ii) Latent Semantic Analysis (LSA) coherence scores (cf. 

Landauer & Dumais, 1997). They showed that these 

different classes of outcomes either eased or inhibited the 

process of explanation and, respectively, reduced or 

increased the experienced surprise associated with the 

scenario (as measured by surprise ratings). Importantly, 

Foster and Keane also asked participants to explain the 

surprising outcomes; thus providing data about the range of 

possible explanations used (data that forms the basis for the 

current simulations). The procedures in the Foster and 

Keane (2013) experiments were similar. In both, 

participants were asked to read nine stories and to judge the 

surprisingness of their outcomes. The participants in one 

condition (explanation) were asked to produce the first 

explanation they could think of for why the outcome may 

have occurred, before rating it for surprise; in a second 

condition (comprehension), participants were asked to 

answer two simple comprehension questions about the 

scenario before rating it for surprise. In both experiments 

participants rated their surprise on a scale from 1-7, with 1: 

not surprising and 7: very surprising. As predicted, Foster 

and Keane (2013) found main effects for the known/less-

known dimension (see Figure 1). These are the results 

modeled in the following simulation. 

3. Presenting EAMoS: An Explanatory 

Analysis Model of Surprise 

The current novel sense-making model, EAMoS, is based 

on the MEB theory of surprise (Foster & Keane, 2015). 

EAMoS takes a different, simpler approach to previous 

models of surprise, focusing on the structure of the set of 

explanations for a given surprising event. We posit that 

every surprising scenario has an explanatory structure, 

consisting of a space of putative explanations that link the 

outcome to its preceding setting (see also Leake, 1991; 

Schank, Kass, & Riesbeck, 1994), and that surprise is 

resolved by building an explanation to relate the setting to 

the outcome. The shape of the explanation space for a given 

scenario determines whether it will furnish explanations that 

emerge easily (i.e., almost as in “normal” comprehension) 

or whether this requires more concerted cognitive effort (at 

the extreme, even involving conscious problem solving).  

   Following these proposals, the present model 

conceptualizes the explanation space as a graph of the set of 

explanations for the surprising event, and analyses the 

structure of this graph to predict the surprisingness of the 

outcome. Note, the model has no mechanics for generating 

explanations per se; but rather builds its graph from 

provided text descriptions of people’s explanations gathered 

in previous experiments. 

Table 1: Sample scenario used by Foster & Keane (2013, 

Experiments 1 & 2). 

 

Setting 
Rebecca is on the beach. 

She goes for a swim in the water 

Outcome 

Known Less-Known 

After she dries herself off 

she notices that her skin 

has turned red. 

After she dries herself off 

she notices that her skin 

has turned turquoise. 

 

2.1 How EAMoS Works 

Operationally, EAMoS takes scenarios consisting of pairs of 

setting and outcome inputs (e.g., see Table 1), and 

explanations that were produced for these scenarios by 

groups of participants in previous empirical work (Foster & 

Keane, 2013). No changes were made to these explanations 

before they were read in to the model, aside from the 

correction of some spelling mistakes. EAMoS uses these 

explanations to build an explanation graph; that is, a 

directed graph, G, from setting to outcome (e.g., see Fig. 2). 

It then outputs a surprise rating for the outcome described in 

the scenario.  

 

2.1.1 Phase One: Populating the Explanation Space The 

model itself first reads in the setting of the scenario for 

which it is judging surprise, followed by the explanations 

and the outcome in question. These settings and outcomes 

are pre-processed (i.e., punctuation, capitalization, and stop 
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words
1
 are removed, and stems/root-forms are determined 

where appropriate), and represented as single nodes (see 

Fig. 2). The explanation text-strings are processed in more 

detail: The explanations used to populate G are pre-

processed, but otherwise are used as given by people. After 

this pre-processing step, G is built as the set of nodes; every 

entity in each explanation string that remains after pre-

processing becomes a node in G. For each node, a directed 

edge is added to the graph for (i) every pair of consecutive 

entities in an explanation, (ii) from the setting to the first 

entity, and (iii) from the last entity to the outcome. 

 

 
 

Figure 2: Simplified explanation structure produced by 

EAMoS for the known variant of the Rebecca scenario (see 

Table 1) using only four explanations. 

 

If two entities in different explanation strings are the same 

(such as “water” in the simple explanation structure 

demonstrated in Fig. 2), then they are represented as a single 

node in G, though the edges between this entity and those 

consecutive to it may differ for the two different 

explanations. So, the explanations “she has been sunburned 

through the water” and “the water was cold” both include 

“water” in their representation in G, but each explanation 

path can be traced distinctly through G from setting to 

outcome. Thus, the relatively simple computational process 

described above produces G, which encodes the 

approximate relationship and overlap among all the entities 

in the provided explanations for each outcome.  

 

2.1.2 Phase Two: Calculating Surprise EAMoS’s analysis 

takes as its core input two variables from G to represent the 

explanatory structure of that scenario: (i) the number of 

edges, and (ii) the number of nodes. It also counts the total 

                                                           
1 Default English stop words list used: www.ranks.nl/stopwords 

number of given entities (Given Information; Total GI) 

provided in the setting and outcome, and the number of 

given entities that are used as nodes in G (GI Used). 

EAMoS uses these variables, scaled by the number of 

explanations included in the building of G, to calculate 

surprise by applying a function that ascertains the difficulty 

of explaining the outcome, shown in Figure 3. Theoretically, 

this function is based on MEB’s idea that surprise is based 

on explanation; the structure of the explanation space is an 

approximation for how easy or difficult this process will be. 

Surprise increases as the ratio between edges and nodes 

increases. Surprise decreases when more of the given 

entities are used in explanations. This is scaled by the 

number of explanations that were used to populate G. 
 

 

 

Figure 3: The surprise function used by EAMoS. 

2.2 Model Simulation and Evaluation 

To evaluate the model, we compared the surprise ratings 

that EAMoS produces to the ratings produced by 

participants in two experiments reported by Foster and 

Keane (2013, Experiments 1 & 2). In this simulation, the 

model was run on the exact same scenarios presented to the 

human participants.  

 

2.2.1 Simulation Setup For the purposes of the simulation, 

the mean surprise rating of each scenario was used. The 

model took as input each scenario, built the explanations 

graph for each setting and outcome pair, and produced 

surprise ratings using the formula in Figure 3. These ratings 

were then normalized and translated into a number between 

1 and 7, to allow for direct comparison with human ratings 

from Foster and Keane (2013). The two experiments used 

18 different story scenarios, all of which were used in the 

simulation; the mean surprise ratings for each scenario were 

recovered from the raw data of participant responses. 

 

 
 

Figure 4: EAMoS’s output against human surprise ratings. 

Explanations used: 

1. The water was 

cold.  

2. She is cold.  

3. She has been 

sunburned through 

the water.  

4. She has sunburn. 
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2.2.1 Results and Discussion EAMoS returned surprise 

scores that were highly correlated with the human data (N = 

95) from Foster and Keane (2013), r(16) = 0.771, p = 

0.0002. At a finer level of detail, EAMoS’s surprise ratings 

correlated with the data for both Experiment 1, r(16) = 

0.737, p = 0.0005, and Experiment 2, r(16) = 0.779, p = 

0.0001. A regression analysis confirmed that EAMoS’s 

output could be used to predict human performance in 

surprise ratings, again when the total data set was used, R
2 

= 

0.594, p = 0.0002 (see Figure 4 for a scatterplot of the 

relationship between model output and participant means), 

and individually, for Experiment 1, R
2 

= 0.544, p = 0.0005 

and for Experiment 2, R
2 

= 0.607, p = 0.0001. Next, we 

wanted to see how the model would perform in relation to 

the two levels of Outcome-type, known and less-known. 

Accordingly, we performed an independent measures t-test, 

which revealed a significant difference between the surprise 

ratings produced by the model for known and less-known 

Outcome-types, t(16) = -2.66, p = 0.017, 2-tailed. As 

expected, the model scored the less-known scenarios as 

more surprising (M = 4.36, SD = .764) than the known 

scenarios (M = 3.55, SD = .504). This compares favorably to 

the experimental results and suggests that the model was 

able to represent the different explanation structures 

afforded by the two levels of Outcome-type.  

Table 2: Sensitivity analysis detailing correlations when 

weights are varied for nodes and edges in EAMoS’s 

analyses (**Correlation is significant at <.001). 

 
 Edges 

N
o

d
e
s 

Weights 0% 25% 50% 75% 100% 

0% -.002 -.048 -.047 -.047 -.047 

25% -.180 .775** .772** .771** .771** 

50% -.180 .775** .772** .771** .771** 

75% -.180 .775** .772** .771** .771** 

100% -.180 .775** .772** .771** .771** 

 

2.3 Sensitivity Analysis: Robustness of Model and 

Contribution of Different Variables   

We then systematically varied the weights of the two core 

contributing variables (edges and nodes) to ascertain the 

robustness of the model. Table 2 displays the resulting 

correlations when varying the weights for the number of 

nodes (0-100%) and the number of edges (0-100%). As one 

cannot divide by zero, the top row of the table represents the 

model output if the node variable is removed entirely from 

the formula. As can be seen, when either nodes or edges are 

not taken into account, the correlations are not reliable, 

whereas, as the formula uses both of these variables in a 

ratio relationship, equally increasing the weight attached to 

either of these variables merely scales the variable 

differently and has no major effect on the model’s highly 

significant correlations with human surprise judgments. 

Although the correlations are slightly higher when the edges 

variable is weighted at 25%, we wished to avoid over fitting 

the model to this data set, so have not altered the formula to 

reflect this. Overall, these findings suggest that our 

approach of not weighting the variables separately is a 

succinct and suitable approach. 

3. General Discussion 

Previous models have approached the modelling of surprise 

largely from an expectation-disconfirmation perspective. In 

this paper we have described a computational model of 

surprise that takes the novel approach of using explanation 

structure to predict surprise ratings for a variety of 

scenarios. Simulations have shown a strong correspondence 

between predictions made by EAMoS and participant 

generated surprise ratings, and the model has tested 

favorably for reliability. Although the scenarios used in the 

simulation detailed here have been short, simple textual 

descriptions of events, we believe that the model could be 

extended to predict surprise in more extended discourse, and 

in real life situations – indeed, for any situation in which 

explanations for why the event occurred can be computed .   

One future direction that we are currently implementing is 

to alter the model to predict surprise for individual 

participants, rather than at the group level. Another fruitful 

direction could be to include a semantic knowledge base; 

although the simplicity of this model works well in 

predicting human surprise, allowing the model to match, 

say, “sea” with “water” in explanations for the Rebecca 

scenario described above, may provide even more accurate 

predictions. 

In conclusion, this work has shown that surprise can be 

predicted by a simple analysis of explanations that link 

preceding settings with target surprising outcomes. These 

initial simulations are promising, and even in the simple 

form presented here the model correlates strongly with 

people’s surprise ratings. In addition to providing further 

support for the MEB theory of surprise by illustrating that 

explanation plays a key role in surprise, these results point 

to promising future research directions for surprise that have 

not been previously explored. 
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