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Abstract

We introduce the Contextual Multi-Armed Bandit task as a
method to assess decision making in uncertain environments
and test how participants behave in this task. Within an ex-
perimental paradigm named Mining in Space, participants see
4 different planets that are described by 3 different binary el-
ements (the context) and then have to decide on which planet
they want to mine (which arm to play). We find that partic-
ipants adapt their decisions to the context well and can best
be described by a Contextual Gaussian Process algorithm that
probability matches according to expected outcomes. We con-
clude that humans are well-adapted to contextualized ban-
dit problems even in potentially non-stationary environments
through probability matching, a heuristic that used to be de-
scribed as biased behavior. We argue that Contextual Bandit
problems can provide further insight into how people make de-
cisions in real world scenarios.
Keywords: Decision Making, Active Learning, Exploration-
Exploitation, Contextual Multi-Armed Bandits

Introduction
A Contextual Multi-Armed Bandit (CMAB) task is a task in
which an agent is confronted with mutliple options (“arms”
of a bandit) out of which one can be chosen. The context
describes the currently available information that can be uti-
lized to choose the best arm to play (Li et al., 2010). This
scenario is a good model for many real world problems; from
choosing what to eat, to buying clothes in a shop, all the way
to finding the right person to befriend; many situations re-
quire us to make the right choice in a given context without
the chance to actually observe the outcome of unchosen op-
tions, constantly trading-off between exploration (trying out
new things) and exploitation (maximizing expected reward).
Therefore, contextual bandit tasks might help to shed light on
how we make contextual decisions in general and on how we
integrate information into our decisions in particular.

Despite a vast amount of research on multi-armed bandit
tasks (Steyvers et al., 2009), little is known about partici-
pants’ behavior in experiments involving contextual bandits.
This is remarkable given that contextual bandits provide us
with a scenario in which, instead of treating learning and de-
cision making distinctively, participants have to learn a func-
tion that maps a context to outcomes and then act according
to their predictions of these. In that sense, contextual bandit
tasks could be seen as a quintessential scenario of everyday
decision making.

In what follows, we will introduce the contextual multi-
armed bandit task (CMAB) and probe how participants perform
in one simple version thereof. The experimental task can be
approached as both a contextual bandit as well as a so-called
restless bandit (in which the average rewards associated with

the arms vary over time) by ignoring information, but is de-
signed such that only taking the context into account will
lead to above chance performance. We will show that hu-
mans are able to learn well within the CMAB and are best de-
scribed by sensitive exploration-exploitation behavior based
on probability matching decisions to the estimated outcomes
of non-parametric Bayesian models (Srinivas et al., 2009).
These models do not try and learn one particular parametric
structure, but rather a distribution over different generating
mechanisms in a given environment. Moreover, probability
matching (also called Thompson sampling) offers a simple yet
powerful way to balance exploration and exploitation in de-
cisions, especially in non-stationary environments. The main
contributions of this paper are threefold:

1. We introduce the CMAB as an experimental paradigm and
emphasize its importance for psychological research.

2. We model human context learning as non-parametric: in-
stead of relying on an arbitrary set of parametric candidate
models, participants seem to learn in a way that represents
distributions over generating mechanisms.

3. We show that participants apply a behavior best-described
by Thompson sampling/Probability Matching. This behav-
ior has often been referred to as biased and erroneous fal-
lacy. However, it turns out to be a satisfyingly sensible
strategy in dynamic environments (see Agrawal & Goyal
2012, for further details).

Definitions and Models
Contextual Bandit Problems
Consider a game in which, in each round t = 1, . . . ,T , an
agent observes a context s

t

2 S from a set of S contexts and
has to choose an action a

t

2 A from a set of possible actions
A. The agent then receives a payoff y

t

= f (s
t

,a
t

)+ e
t

. It is
the agent’s task to take those actions that produce the high-
est payoff. As the expected payoff depends on the context,
the agent has to learn the underlying function f ; sometimes,
this may require the agent to choose an action which is not
expected to give the highest payoff, but which might provide
more information about f , thus choosing to explore rather
than exploit. As the different actions are normally described
as playing a bandit’s arm and the context provides informa-
tion that might help to find the right arm to play, these games
are called Contextual Multi-Armed Bandit tasks.

Different models can be used to learn in a contextual bandit
setting. The models applied here broadly fall within two cat-
egories: context-blind and contextual models. Context blind
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models ignore the provided context completely and only learn
based on direct feedback of the chosen arms. Contextual
models do take the context into account and therefore are gen-
erally expected to perform better than context-blind models.

We will first describe a general choice rule, then the context
blind models, and afterwards the parameterization of the two
used contextualized models (linear and Gaussian Process re-
gression) before then describing two different decision rules
that can be used for the contextual models.

Choice rule
In the psychological task considered later, the context s

t

at
time t will be the same for all arms, while the function that
maps the context to the (expected) payoff of the arm will
vary over arms. The task is therefore to learn functions f

k

for each arm that map the context to the payoff and then
choose the arm with the highest expected payoff while con-
stantly trading-off between exploration and exploitation. To
do so, the models proposed here produce n different values
q1,t ,q2,t , . . . ,qn,t to compare between the n different arms at
a time point t given the current context s

t

by some learned
function f

k

that matches the context s

t

to the considered arm
k:

q
k,t = f

k

(s
t

) (1)

This could be the mean predicted outcome for every arm or
any other value as described below. In order to transform
these values to a probability of picking a given arm arm

j

, the
values are transformed by a softmax rule with inverse tem-
perature parameter g as in Equation 2.

p(arm
t

= k) =
exp{g q

k,t}
Ân

i=1 exp{g q
i,t}

(2)

Context-blind Models
Context-blind models ignore the context completely and only
respond to the observed outcomes of arms over time.

Random choice The most simplistic context-blind model
is a random choice. This model picks every arm with equal
probability p(arm

t

= k) = 1/#arms. As this model does not
learn over time, it will provide a baseline against which all
the other models can be compared.

µ-tracking The other context-blind model is based on sim-
ple mean tracking.

q
k,t = µ̂

k,t =
1
n

t

Â
t=1

darmt=k

yt (3)

where darm
t

=k

= 1 if arm k is chosen at time t and 0 otherwise.

Contextual Models
The contextual models learn the functions f

k

that map the
context to the (expected) payoff for each arm. Here, we will
consider two contextual models: linear and Gaussian Process
regression.

Linear Regression Linear regression is a simple approach
to learn each function f

k

that relates the contexts s

t

to an
output f

k

(s
t

). Each context s

t

has values on a total of m at-
tributes, i.e., s

t

= (s1,t , . . . ,sm,t). The regression model learns
a linear function of the context attributes:

f̂

k

(s
t

) = b0 +
m

Â
i=1

b
i

s

i,t + e
t

(4)

Let s1:t = (s1, . . . ,st

) denote all the contexts encountered at
time t. The regression model is estimated from s1:t and then
used to predict new outcomes for each arm given a new con-
texts at t + 1. Once the new output has been chosen, the re-
gression model is updated and then used for the next trial with
new contexts. As this is a parametric model, it assumes that
participants approach the problem in a way that only allows
for linear effects of the context. In order for the regression
approach to not suffer from matrix deficiencies, 10 pseudo-
observations were created from a Normal distribution with
N (50,10).

Gaussian Process Regression Another class of models is
non-parametric. Instead of postulating one concrete paramet-
ric form (e.g., a linear one) out of an infinite set of possi-
ble forms (a choice that, without any further knowledge, is
arbitrary), non-parametric models implicitly assume that the
function can be represented by an infinite number of parame-
ters and let the data speak directly by the means of Bayesian
inference. One example of a non-parametric model in the
functional domain is a Gaussian Process.

A Gaussian Process (henceforth GP ) is a collection of ran-
dom variables from which every finite marginal distribution
is multivariate Gaussian. We define a mean function m(x) and
the covariance function k(x,x0) of a process f (x) as

m(x) = E[ f (x)] (5)
k(x,x0) = E[( f (x)�m(x))( f (x0)�m(x0))] (6)

A Gaussian process then can be expressed as

f (x)⇠ GP
�
m(x),k(x,x0)

�
. (7)

Even though many different covariance functions exist,
within all the examples and calculations presented here the
squared exponential covariance function with a length scale
l will be used.

cov
�

f (x
p

), f (x
q

)
�
= k(x

p

,x
q

) = exp
✓
�
|x

p

� x

q

|2

2l

◆
(8)

The lengthscale l was estimated by using gradient descent.
In the noisy situation that will be analyzed in all of the

upcoming situations, the covariance can be written as follows

cov = (y
p

,y
q

) = k(x
p

,x
q

)+s2
n

d
pq

, (9)

where d is Kronecker’s d, which is 1 if p = q and 0 otherwise.
Suppose we have collected observations y

t

=
[y1,y2, . . . ,yt

]> at inputs x
t

= {x1, . . . ,xt

}, y

t

= f (x
t

) + e
t

,
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e
t

⇠ N (0,s2), then the posterior over f is a GP with mean
m

T

(x), covariance k

T

(x,x0), and variance s2
T

(x):

m

T

(x) = k
T

(x)>(K
T

+s2I)y
T

(10)

k

T

(x,x0) = k(x,x0)�k
T

(x)>(K
T

+s2I)�1k
T

(x0) (11)

s2
T

(x) = k

T

(x,x) (12)

where k
T

(x) = [k(x1,x), . . . ,k(xT

,x)]> and K
T

is the positive
definite kernel matrix [k(x,x0)]

x,x02A

T

. The GP is used in the
same fashion as the linear model by always using all the con-
texts and observed outcomes up to time point t in order to
make predictions for time point t + 1. Therefore, a GP for
every arm over time will be estimated given the observed con-
text as shown in Equation 13.

f̂

j

(s)⇠ GP
�
m(s),k(s,s0)

�
. (13)

As a Gaussian Process is a non-parametric model for func-
tion learning, its application represents the assumption that
participants do not a priori expect one parametric form of a
function, but rather learn the form by the observed data over
time. The Gaussian Process was initialized by the use of 10
pseudo-observations as in the regression approach described
before.

Sampling strategies
Let us now look at the different algorithms that can be used to
apply the two contextual models in a CMAB. Sampling strate-
gies here mean different ways by which one could come up
with a choice of an arm, given the estimated expected out-
comes at a given time.

Upper Confidence Bounds The upper confidence bound
algorithm estimates a trade-off between the current expected
value and the variance per arm and optimistically picks the
arm with the highest upper confidence bound. This algorithm
has been shown to perform well in many real world contex-
tual bandit tasks (Krause & Ong, 2011). The way a UCB-
sampling agent would select an arm is described in Algorithm
1.

Algorithm 1 Upper Confidence Bands Sampling
Require: Context s; Models M

j,t�1
for t = 1,2, . . . ,T do
Choose arm⇤

jt

= argmax µ(M
j,t�1(s))+1.96s(M

j,t�1(s))
Sample y

t

= f (arm⇤
jt

)+ e
t

Update M
j,t�1 ! M

j,t

end for

The trade-off is based on a confidence interval approxima-
tion based on a normal distribution and therefore the trade-off
parameter is set to 1.96, marking the 95% confidence interval.
The UCB-algorithm can be seen as a selection strategy with
an exploration bonus, where the bonus depends on the confi-
dence interval of the estimated mean return. As we will need
probability estimates to model participants choices later on,

the estimates for arm⇤
jt

were fed into the softmax equation
described above.

Thompson Sampling Thompson sampling chooses each
arm according to the (subjective) probability that it provides
the highest payoff out of all the available arms, given the con-
text (May et al., 2012). This is a form of probability match-
ing. The algorithm can be implemented by sampling for each
arm a payoff according to the learned models of the arms,
and then choose the arm with the highest sampled payoff.
Even though this model seems very simplistic, it can perform
reasonably well in contextual bandit tasks and can describe
human choices in (non-contextual) restless bandit tasks well
(Speekenbrink & Konstantinidis, 2014). Whereas psychol-
ogy has looked at probability matching as an inferior strategy
of decision making for a long time, it has been shown to per-
form well in many restless bandit tasks and can easily adapt
to changing environments as it still keeps on exploring other
options over time.
An agent following the Thomson sampling algorithm would
pick the next arm as described in Algorithm 2.

Algorithm 2 Thompson Sampling
Require: Contexts s1:T ; Models M

j

for t = 1,2, . . . ,T do
for arm

k,t ,k = 1, . . . ,n do
Sample y

⇤
k,t�1 ⇠ M

k,t�1(st

)
end for
Choose arm

t

= argmax
k

y

⇤
k,t

Sample y

t

= f (arm
t

)+ e
t

Update M
j,t�1 ! M

j,t

end for

Main advantages of Thompson sampling are (1) that it does
not rely on additional parameter tuning, and (2) that it can
adapt to many diverse environments. The probability of an
arm to be chosen was calculated as shown in Equation 14.

p(arm
t

= k) = p(8 j 6= k : y

⇤
k,t � y

⇤
j,t) (14)

This means that each arm is predicted to be chosen by its
probability to produce the highest outcome at a given time.

Summary of all models
Taking all of the models (context-blind and contextual) and
choice rules together results in the models shown in Table 1.

Class Algorithm Description
Context- Random Picks at random
blind µ-tracking Picks tracked mean
Linear UCB Picks upper confidence band

Thompson Probability matching
Gaussian UCB Picks upper confidence band
Process Thompson Probability matching

Table 1: Summary of all used models
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Experiment : Contextual Bandit Task
The experiment was designed to test if participants are able
to learn in a contextual bandit task. It used a relatively simple
description of the context s and the different arms. Within
this first CMAB experiment we focused on a task with three
binary context variables that could either be on (+) or off (-)
and 4 different arms.

Contextual Bandit setting
The outcomes of the different arms in dependency of the con-
text are shown in Equations 14-17.

y1,t = 50+15⇥ s1,t �15⇥ s2,t + e1,t (15)
y2,t = 50+15⇥ s2,t �15⇥ s3,t + e2,t (16)
y3,t = 50+15⇥ s3,t �15⇥ s1,t + e3,t (17)
y4,t = 50+ e4,t , (18)

with e
k,t ⇠ N (0,5). This means that each arm reacted dif-

ferently to the context s

t

= (s1,t ,s2,t ,s3,t) through linear func-
tions, producing an outcome f

k

(s
t

)+e
k,t as described before.

For all different contexts, the probability of being + was set
to p(s

j,t = +) = 0.5. The different arms were deliberately set
up such that all the expected values are the same, E[y

k,t ] = 50
over time in order to avoid first order stochastic dominance
of context-blind choices1. This means that the only way to
gain higher values than the individual bandits’ averages is by
learning how the different factors influence the arms within
every trial. The context-blind strategies therefore would not
perform better than chance. Moreover, introducing an arm
that only returns the overall mean with some added noise
(Arm 4) helps us to distinguish even further between contex-
tual and context-blind models. As context blind models only
take the outcome into account, they should prefer Arm 4 as
it produces the same mean over time, but exhibits less vari-
ance and therefore second order dominates all the other arms.
Contextual models on the other hand should (at the end) al-
most never select Arm 4 as taking the context into account
will generally lead to better outcomes than the simple mean
alone.

Methods
Participants 47 participants (26 males, age: M = 31.9,
SD = 8.2) were recruited via Amazon Mechanical Turk and
received $0.3 plus a performance-dependent bonus of up to
$0.5 as a reward. None of the participants were excluded
from the remaining analysis.

Design Participants were told that they had to mine for
“Emeralds” on different planets. Moreover, it was explained
that at each time of mining the galaxy was described by 3
different environmental factors, “Mercury”, “Krypton”, and
“Nobelium”, that could either be on (+) or off (-) and had
different effects on different planets. Participants were told
that they had to maximize the overall production of Emeralds

1Situations only containing - or + were not used

over time by learning how the different elements influence the
planets and then picking the planet they thought would pro-
duce the highest outcome, given the currently available ele-
ments. It was explicitly noted that different planets can react
differently to different elements. The total number of trials
was fixed to be 150 and the experiment was well-received on
Mechanical Turk.2
Notice that this task exactly corresponds to the contextualized
multi-armed bandit problem described above, where different
planets represent different arms and different elements rep-
resent the context. This means that a good strategy would
involve a trade-off between learning the 4 different func-
tions describing how the elements influence each planet and
then maximizing the expected outcome by choosing the right
planet (arm) at a given time and context. A screenshot can be
seen in Figure 1.

Figure 1: Screenshot of the Experiment

Which planet corresponded to which of the pay-off func-
tions described above was assigned randomly before the start
of the experiment.

Analysis All models were fitted by maximum likelihood.
We assessed the ability for each of the 6 models to predict
participants’ choices over all trials and calculated Akaike’s
“An Information Criterion” (AIC) by finding the best in-
verse temperature parameter g through a combination of
golden section search and successive parabolic interpolation
provided by the R-function optimize for all continuous
outcomes (the UCB and the µ-tracker) or by using the
estimated probabilities directly (for Thompson sampling).
The AIC here is based on the log-likelihood of the predicted
probabilities for eah chosen arm over all trials.

Hypotheses
Based on our conjectures above, we hypothesized the follow-
ing 3 findings a priori:

2Search for Eric Schulz on Turkopticon
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1. Participants will be able to learn how the context depends
on the outcomes and therefore will be generally better de-
scribed by contextual than by context-blind models.

2. Instead of one particular parametric strategy, participants
will approach the problem in a non-parametric way allow-
ing them to potentially learn different types of functions, if
need arose. Therefore, participants will be better described
by the Gaussian Process than by the linear model.

3. Instead of maximizing output by a deliberate mean-
variance trade-off, participants approach dynamic deci-
sion making problems by utilizing a probability match-
ing heuristic. Thus, they will be better described by the
Thompson sampling choice rule than by the Upper Confi-
dence Band approach.

Results
Figure 2 shows the raw data for each participant over all 150
trials.
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Figure 2: Obtained payoff for each participant at each trial.

In Figure 2, participants are ordered in ascending order ac-
cording to their mean overall performance. It can be seen
that almost all participants received higher payoffs towards
the end. Moreover, some participants (the top half) seem to
learn the functions very well and then consistently produced
high scores over time. In the lower half, however, there are a
few participants who do not seem to learn the functions too
well.

Most participants also performed better than chance (an av-
erage score of higher than 50) as is displayed in the histogram
of average rewards per participant shown in Figure 3.
Indeed, performing a simple t-test against µ = 50 confirmed
that most participants performed above chance with t(46) =
7.17, p < 0.01.
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Figure 3: Average payoff per round. More participants per
count are marked by a lighter blue.

Even though some participants performed below chance,
we did not exclude any of them from the analysis described
next as we did not want to bias our results in favor of the
contextual models. The overall performance of all models is
shown in Table 2.

Table 2: Average AIC, standard deviations, and the number
of participants best fit by the different models.

Model AIC

mean

AIC

SD

#best
Random 415.9 0 5
µ-tracking 412.9 5 6
Linear-UCB 387.8 34 4
Linear-Thompson 383.0 46 15
GP-UCB 389.4 34 3
GP-Thompson 381.6⇤ 42 18⇤

The 5 participants that were best described by the Random
model were also among the participants who performed at
chance level as shown in Figure 3.
It can clearly be seen that the contextual models described
participants behavior better than the two context-blind mod-
els. Taken together, only 7 participants were best described
by the context-blind models, whereas 40 participants were
best described by the contextual models.

The Gaussian Process models described more participants
best than the linear regression models (21 vs. 19). Even
though this is only a small difference, it is evermore surpris-
ing as the linear model here would be the best description of
the underlying system a priori – the task is a linear system
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after all. What this tells us is that instead of approaching the
problem with a fixed parametric representation in mind, par-
ticipants might indeed apply a learning strategy that is more
easily adaptable to other scenarios than a linear one. Lastly,
more people were described best by the probability matching
algorithm of the Thompson sampler than by the expectation-
variance-trade-off calculation of the UCB (33 vs. 7). This
indicates that participants seem to apply this heuristic. Proba-
bility matching has been described as rather dumb in the past.
However, in situations where the goal is to trade-off between
exploration and exploitation, this heuristic is actually a smart
strategy as it keeps exploring while at the same time generat-
ing high outcomes (Agrawal & Goyal, 2012).

That participants actually do learn over time while also
sticking to some exploratory behavior can be see in Figure 4.

Score

Trials

Figure 4: Density of outcome over participants per round.

As participants learn over time, the density for higher scores
goes up and the density for lower scores goes down.

Discussion and Conclusion
We have introduced the Contextual Multi-Armed Bandit task
as a new paradigm to assess participants’ decision making in
uncertain environments. Within this task, participants were
able to learn the underlying structure well and took the pro-
vided context into account. Overall, most participants per-
formed above chance and were best described by a GP-based
Thompson sampling algorithm. That participants were best
described by a Gaussian Process seems to suggest that –
instead of having one specific parametrized representation of
the environment– people learn by the means of general effec-
tive strategies that can potentially adapt to new or changing
environments if required. However, future studies will have
to replicate this findings in other domains. The good perfor-
mance of the Thompson sampler fits well into past findings

as Speekenbrink & Konstantinidis (2014) found that Thomp-
son sampling predicts participants’ choices well in a restless
bandit task. Moreover, this means that probability match-
ing, a behavior that used to be frowned upon as irrational,
provides a sensitive strategy that people might actually ap-
ply in exploration-exploitation scenarios. In conclusion, all
of our three main hypotheses were confirmed. This research
can only be seen as a first step into research on contextual
bandit problems. Future studies could try to assess how peo-
ple behave in scenarios where more context is given either
by creating a multi-context environment (for example, one
context per planet) or by providing continuous context vari-
ables (for example, values between 0 and 10). Another option
could be to assess how participants learn in a multi-context-
multi-function environment, that is an environment where the
different contexts relate to arms in different ways. As we
have found that Thompson sampling can provide a good de-
scription of participants’ behavior and Thompson sampling
is known to be well-adapted towards dynamically changing
environments, a future experiments could try to model partic-
ipants’ behavior in dynamic tasks, where the reward structure
changes over time or with the number of times a given option
has been chosen.

Here, we have introduced a comparison between a linear
model and Gaussian process in what can essentially be de-
scribed as an active learning task. However, in future experi-
ments we aim to try and compare even more elaborate models
within this context. Using an active learning domain as a plat-
form for model comparison might be another useful approach
to decide among models from a list of seemingly endless con-
testants (Schulz et al., 2014).
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