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Abstract 
Decisions from Experience (DFE) involve situations where decision 
makers sample information before making a final choice. Trying 
clothes before choosing a garment and enquiring about jobs before 
opting for one are some examples involving such situations. In DFE 
research, conventionally, the final choice that is made after sampling 
information is aggregated over all participants and problems in a 
given dataset. However, this aggregation does not explain the 
individual choices made by participants. In this paper, we test the 
ability of computational models of aggregate choice to explain 
choices at the individual level. Top three DFE models of aggregate 
choices are evaluated on how these models account for individual 
choices using the maximization criterion. A Primed-Sampler (PS) 
model, a Natural-Mean Heuristic (NMH) model, and an Instance-
Based Learning (IBL) model are calibrated to explain individual 
choices (maximizing or non-maximizing) in the Technion 
Prediction Tournament (the largest publically available DFE 
dataset) and the generalization SC Problems dataset. Our results 
reveal that all the three DFE models of aggregate choices perform 
average to explain individual choices. Although the IBL model 
performs slightly better than PS and NMH models; all the three 
models are able to account for all individuals in both the calibration 
and generalization datasets. We conclude by drawing implications 
for computational cognitive models in explaining individual choices 
in DFE research. 

Keywords:  Aggregate choice, individual choice, experience, 
sampling, computational models, maximization. 

Introduction 
The steep rise in number of smartphones has given an ample 
choice to consumers to experiment with (Emarketer, 2014). 
As a result, a customer now has the privilege of choosing 
between a wide range of smartphones. To buy the best, one 
must sample information about the various handsets before 
making one final choice for one’s preferred smartphone. The 
act of making choices based upon sampled information, 
however, is not limited to choosing between smartphones 
rather, it is a very common exercise involving people in 
different facets of their daily life (choosing clothes, choosing 
jobs etc.). In fact, information search before a choice 
constitutes an integral part of Decisions from Experience 
(DFE) research, where the focus is on explaining human 
maximizing decisions based upon one’s experience with 
sampled information (Hertwig & Erev, 2009).  

  In order to study people’s search and choice behaviors in the 
laboratory, DFE research has proposed a “sampling 
paradigm” (Hertwig & Erev, 2009). In the sampling 
paradigm, people are presented with two or more options to 
choose between. These options are represented as blank 

buttons on a computer screen. People are first asked to sample 
as many outcomes as they wish from different button options 
(information search). Once people are satisfied with their 
sampling of the options, they decide from which option to 
make a single final choice for real.   

  Computational cognitive models of human choice behavior 
have thus far predicted choices at an aggregate level in the 
sampling paradigm, i.e., when people’s final choices are 
averaged over a large number of participants models 
(Busemeyer & Wang, 2000; Gonzalez & Dutt, 2012; 
Lejarraga, Dutt, & Gonzalez, 2012). For example, the 
Primed-Sampler (PS) model, the Natural-Mean Heuristic 
(NMH) model, and the Instance-Based Learning (IBL) model 
are popular DFE algorithms for explaining aggregate choices 
(Erev et al., 2010; Gonzalez & Dutt, 2011). The PS model 
depends upon the recency of sampled information, where the 
model looks back a few samples on each option before 
making a final choice (Gonzalez & Dutt, 2011). On the other 
hand, the NMH model is a generic case of the PS model. In 
this model, one calculates the natural mean of outcomes 
observed on each sampled option, and using the same for 
making a final choice (Hertwig, 2011). Similarly, the IBL 
model (Gonzalez & Dutt, 2011) consists of experiences 
(called instances) stored in memory. Each instance’s 
activation is a function of the frequency and recency of the 
corresponding outcomes observed during sampling in 
different options. These activations are used to calculate the 
blended values for each option, thereby helping the model 
make a final choice. The IBL model rely on ACT-R 
framework for its functioning (Anderson & Lebiere, 1998). 

   Prior DFE research has shown that, at the aggregate level, 
the PS, NMH, and IBL models exhibit superior performance 
compared to other computational models in the sampling 
paradigm (Erev et al., 2010; Gonzalez & Dutt, 2011). For 
evaluating these models at the aggregate level, a comparison 
is made between a model’s data and human data from the 
Technion Prediction Tournament (TPT) dataset (TPT being 
the largest publically known DFE dataset). However, up to 
now, none of the three DFE models have been evaluated in 
their ability to account for maximizing choice behavior at the 
individual participant level (i.e., in explaining the 
maximizing final choice of each human participant playing a 
problem in a dataset). If these models are able to account for 
maximizing choices at the aggregate level, then one expects 
that they might also be able to account for maximizing 
choices at the individual level. However, given that there are 
sources of noise in both the sampling data as well as in these 
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models, it is likely that these models are no better than 
random chance in explaining choices at the individual level. 
Furthermore, as models developed at the aggregate level have 
different number of free parameters, it is important to use 
generalization as a test of a model’s ability to account for data 
at the individual level (Busemeyer & Wang, 2000).  

In this paper, our main goal is to evaluate how models, which 
explain choice behavior at the aggregate level, perform at the 
individual level. In order to evaluate models at the level of an 
individual participant, we use the largest publically available 
TPT dataset in the sampling paradigm (Erev et al., 2010) to 
calibrate the models. Next, we use the SC Problems six-
problem dataset (Hertwig et al., 2004) to generalize the 
calibrated models and test them at the individual level. In 
what follows, we detail the dataset used and the working of 
the three models described above. Then, we discuss the 
methodology of calibrating these models at the individual 
participant level so as to capture the maximizing final choice. 
Next, we present the results of models’ evaluation at the 
individual level both during calibration and during 
generalization. Finally, we close the paper by discussing the 
implications of our results for models of aggregate choice. 

The Technion Calibration Dataset 

The Technion Prediction Tournament (TPT) (Erev et al., 
2010) was a competition in which several participants were 
subjected to an experimental setup, the “e-sampling 
condition.” In this condition, participants sampled the two 
blank button options in a binary-choice problem before 
making a final choice for one of the options. During 
sampling, participants were free to click both button options 
one-by-one and observe the resulting outcome. Participants 
were asked to press the "choice stage" key when they felt that 
they had sampled enough (but not before sampling at least 
once from each option). The outcome of each sample was 
determined by the structure of the relevant problem. One 
option corresponded to a safe choice: Each sample provided 
a medium (M) outcome. The other option corresponded to the 
payoff distribution of a risky choice: Each sample provided a 
High (H) payoff with some probability (pH) or a low (L) 
payoff with the complementary probability (1 - pH). At the 
choice stage, participants were asked to select once between 
the two options. Their choice yielded a random draw of one 
outcome from the selected option and this outcome was 
considered at the end of the experiment to determine the final 
payoff. Competing models submitted to TPT were evaluated 
following the generalization criterion method (Busemeyer 
&Wang, 2000), by which models were fitted to choices made 
by participants in 60 problems (the estimation set) and later 
tested in a new set of 60 problems (the test set) with the 
parameters obtained in the estimation set. The 120 problems 
consisted of choice between a safe option and a risky option 
as described above. The M, H, pH, and L in a problem were 
generated randomly, and a selection algorithm was used so 
that the 60 problems in each set differed in its M, H, pH, and 
L from other problems. In all the models described here, we 

have considered an individual human or model participant 
playing a problem in a dataset (competition or estimation) as 
an “observation.” Also, all model parameters have been 
calibrated by using the entire TPT dataset that consisted of 
120 problems and 2,370 observations. For more details about 
the TPT, please refer to Erev et al. (2010). 

In this section, we detail the working of three popular DFE 
models that have been used to evaluate human choices at the 
aggregate level.   

 
Prime Sampler (PS) Model 
   The PS model (Hertwig, 2011) employs a simple choice 
rule. In this model, participants are expected to take a sample 
of k draws from each option. The exact value of k differs 
between observations (an observation is defined as a 
participant playing a problem in a dataset). The PS model 
assumes that the exact value of k for an observation is 
uniformly drawn as an integer between 1 and N, where N is a 
free parameter that is calibrated in the model. The final choice 
for each observation is determined by the following choice 
probability: 
 

𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋) =
𝐸𝑋𝑃(𝑆𝑀𝑒𝑎𝑛𝑋) (𝐸𝑋𝑃(𝑆𝑀𝑒𝑎𝑛𝑋) + 𝐸𝑋𝑃(𝑆𝑀𝑒𝑎𝑛𝑌))⁄   . . . (1) 
 
Where, 𝑆𝑀𝑒𝑎𝑛𝑋 and 𝑆𝑀𝑒𝑎𝑛𝑌 are the samples means of the two 
options and 𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋) is the probability of 
choosing 𝑂𝑝𝑡𝑖𝑜𝑛 𝑋. For each model observation, the 
𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋) is compared with a random number U (0, 
1) to make a choice for one of the two options. If the value of 
random number is less than or equal to 𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋), 
then a choice is made for Option X. According to literature, 
the PS model has performed very accurately at predicting 
aggregated human choices in the sampling paradigm (Erev, 
Glozman, & Hertwig, 2008). 

Natural Mean Heuristic (NMH) Model 
   The NMH model (Hertwig & Pleskac, 2010) involves the 
following steps: 
Step 1. Calculate the natural mean of observed outcomes for 
each option by summing, separately for each option, all n 
experienced outcomes and then dividing by n. 
Step 2. Apply equation 1, where the sample mean is replaced 
by natural mean. 
 
Thus, the NMH model is a special case of the PS model, 
where k = an observation’s sample size. There are no free 
parameters in the NMH model. Like the PS model, this model 
has also performed very accurately at predicting aggregated 
human choices in the sampling paradigm (Hertwig & 
Pleskac, 2010).  

Instance Based Learning (IBL) Model 
The IBL model is based upon the ACT-R framework 
(Gonzalez & Dutt, 2011; 2012) and this model is known to 
predict human aggregate choices better than several DFE 
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models that include assumptions similar to those made in the 
PS and NMH models (Gonzalez & Dutt, 2011). In this model, 
every occurrence of an outcome on an option is stored in the 
form of an instance in memory. An instance is made up of the 
following structure: SDU, here S is the current situation (a 
number of blank option buttons on a computer screen), D is 
the decision made in the current situation (choice for one of 
the option buttons), and U is the goodness (utility) of the 
made decision (the outcome obtained upon making a choice). 
When a decision choice needs to be made, instances 
belonging to each option are retrieved from memory and 
blended together. Blended values are a function of activation 
of instances being blended. Activation is a function of the 
frequency and recency of observed outcomes that occur on 
choosing options during sampling. In binary choice, the IBL 
model chooses one of two options by selecting the one having 
a value greater than a random variable (Gonzalez & Dutt, 
2011; 2012). The blended value of option j (e.g., a gamble 
that pays $4 with .8 probability or $0) at any trial t is defined 
as             

𝑉𝑗,𝑡 = ∑ 𝑝𝑖,𝑡𝑥𝑖,𝑡

𝑛

𝑖=1

                  ⋯ (2) 

where xi, t is the value of the U part of an instance i (e.g., either 
$4 or $0, in the previous example) at trial t and pi, t is the 
probability of retrieval of that instance from memory at the 
same trial [10]. Because xi, t is the values of the U part of an 
instance I at trial t, the number of terms in the summation 
changes when new outcomes are observed within an option j 
(and new instances corresponding to observed outcomes are 
created in memory). Thus, n=1 if j is a safe option with one 
possible outcome. If j is a risky option with two possible 
outcomes, then n=1 when one of the outcomes has been 
observed on an option (i.e., one instance is created in 
memory) and n=2 when both outcomes have been observed 
(i.e., two instances are created in memory).  

 
At any trial t, the probability of retrieval of an instance i is 

a function of the activation of that instance relative to the 
activation of all instances created within that option, given by  

                              

𝑝𝑖,𝑡 = 𝑒𝐴𝑖,𝑡/𝜏

∑ 𝑒𝐴𝑗,𝑡/𝜏   
𝑗

                   ⋯ (3)  

 
Where τ, is random noise defined as =𝜎. √2   and σ is a free 
noise parameter. Noise in Equation (2) captures the 
imprecision of recalling past experiences from memory. The 
activation of an instance corresponding to an observed 
outcome in a given trial is a function of the frequency of the 
outcome’s past occurrences and the recency of the outcome’s 
past occurrences (as done in ACT-R). At each trial t, 
activation A of an instance i is 
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where d is a free decay parameter; ,i tJ  is a random draw from 
a uniform distribution bounded between 0 and 1; and ti is each 
of the previous trial indexes in which the outcome 
corresponding to instance i was observed. The IBL model has 
two free parameters that need to be calibrated: d and σ. The d 
parameter controls the reliance on recent or distant sampled 
information. Thus, when d is large (> 1.0), then the model 
gives more weight to recently observed outcomes in 
computing instance activations compared to when d is small 
(< 1.0). The σ parameter helps to account for the sample-to-
sample variability in an instance’s activation. For each model 
observation, the model applies equation 1 to make a choice 
for one of the two options (for this purpose, the sample mean 
is replaced by blended values, Vj,t for each option). 

The Coin Toss (CT) Model 
    The CT model is used as a baseline model and it 

represents chance performance. In this model, we compare 
the value of a random number between [0, 1] with probability 
= 0.5. In a binary-choice task, if the random number value < 
0.5, then the model chooses the final choice as one option; 
otherwise, the model chooses a final choice as the other 
option. When simulated, for a binary-choice task, this model 
is expected to produce close to 50% accuracy in explaining 
participants’ individual choices. As the probability is fixed at 
0.5, this model contains no free parameters. 

Method 
Model Execution 
Models submitted to the TPT were evaluated only according 
to their ability to account for aggregate choice behavior (i.e., 
the proportion of choices for the option with H and L 
outcomes were aggregated across participants and problems) 
(Erev et al., 2010). In this paper, we account for the choice at 
the individual participant level. For this purpose, a choice 
made by a model observation is evaluated against a choice 
made by a corresponding human observation. In order to 
compare human and model choices for each observation, we 
evaluate an “error ratio” (i.e., the ratio of incorrectly 
classified final choices between model and human 
observations divided by the total number of observations). 
Firstly, for each observation in human data, we determine the 
final choice whether maximizing or non-maximizing.  In the 
TPT dataset, a choice is classified as maximizing if the 
expected value of an option (based upon given problem) with 
high or low outcome is greater than expected value of an 
option with medium outcome. Those cases for which the 
aforementioned criteria fails are termed as having non 
maximizing choice. Furthermore, human final choice is then 
compared with the theoretical maximizing or non-
maximizing choices to obtain maximizing human final 
choice per observation. A similar final maximizing choice is 
then derived for a model observation and this derived choice 
is compared to the maximizing choice made by the 
corresponding human observation. The final choices from 
each of the three models are compared to 2,370 human 
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observations, i.e., the total number of participant-problems-
set combinations in TPT dataset. For a model, the error-ratio 
is calculated as:   
Error Ratio = (MHNM +NHMM)/ (MHNM + NHMM + NHNM 
+MHMM)                                                                  ⋯    (5) 
Where, MHNM was the number of observations where the 
human made a maximizing choice but the model predicted a 
non-maximizing choice. NHMM was the number of 
observations where human made a non-maximizing choice 
but the model predicted a maximizing choice. Similarly, the 
MHMM and NHNM were the number of observations, where a 
human observation made the same choice (maximizing or 
non-maximizing) as predicted by the model. The smaller the 
value of the error ratio, the more accurate is a model in 
accounting for maximizing individual choices of human 
participants. For some observations, a model could be equally 
likely to choose either of the options. Such cases were 
discarded from the error ratio calculation and were termed as 
uncategorized (UN) cases, separately. Thus, more are the 
number of UN cases, the poorer is the corresponding model’s 
algorithm in accounting for complete human data. 
    In the PS model, an integer value was drawn between 1 and 
N. For the purposes of model calibration, a maximum value 
of N was assumed to be 216. This choice of maximum value 
was justifiable as 216 is the maximum sample size in the TPT 
dataset (Erev et al., 2010). For each new value of N from 1 to 
216, the PS model was run 5 times over the set of 2,370 
observations (i.e., for each run, 2,370 observations were used 
in the model). Error ratio was computed for each of the 5 runs 
and these five 5 ratios were then averaged for calculating the 
average error ratio. The N value for which the average error 
ratio was minimized was taken as the calibrated N value. The 
choice of 5 runs of the model is because it enabled us to 
account for the randomness present in the model due to 
equation 1.   
   The NMH model did not possess any free parameters. The 
model’s calibration involved only the natural mean 
computation for each observation based on the outcomes 
observed on both the op options during sampling. In NMH 
model, the final maximizing choice was made for an option 
based upon equation 1. This model was run 5 times across 
2,370 observations since the computation of final choice 
involved random decisions.  
  The IBL model described here has two free parameters d 
and σ that were calibrated using a genetic algorithm program. 
The genetic algorithm repeatedly modified a population of 
individual parameter tuples in order to find the tuple that 
minimized the error ratio. In each generation, the genetic 
algorithm selected individual parameter tuples randomly 
from a population to become parents and used these parents 
to select children for the next generation. Over successive 
generations, the population evolved toward an optimal 
solution. The population size used here was a set of 20 
randomly-selected parameter tuples in a generation (each 
parameter tuple was a particular value of d and σ). The 
mutation and crossover fractions were set at 0.1 and 0.8, 
respectively, for an optimization over 150 generations. For 

each parameter tuple, the IBL model was run 5 times across 
2,370 observations. Across the 5 runs, the model’s average 
error ratio was computed by averaging the error ratios from 
each run. The parameter tuple that minimized the average 
error ratio across 150 generations were reported as the 
calibrated parameters for the IBL model. 

Results  
In the PS model, the best average error ratio across 5 runs was 
found to be 0.40. This error ratio occurred at N=18. Figure 1 
shows the average error ratio results obtained from the PS 
model for different values of N. As shown in the figure, for 
the first few values of N, the error ratio reduced rapidly as the 
size of N increased (up to N = 18 samples). However, the 
error-ratio value saturated to a smaller proportion after 
increasing N further. Thus, there was not much variation in 
the error ratio from N=18 to N=216.  

 
Figure 1. Results from the PS model. The value of 

parameter N was varied between 1 and 216. The best 
average error ratio = 0.40 for N=18.  

 
Table 1 shows the individual-level results from the PS model 
for the best value of N=18. As shown in Table 1, the NHNM 
combinations constituted 24.8% of total combinations. This 
NHNM proportion was second best amongst other 
combinations (MHMM, MHNM, NHMM, and UN). The MHMM 
combinations had the highest value of 34.3%. The combined 
average of both the combinations formed about 59.1% of 
correctly predicted choices by the model. In contrast, the 
erroneous MHNM and NHMM ratios were at 21.2% and 19.5% 
respectively. There were no uncategorized (UN) observations 
out of 2,370 observations. The PS model’s best average error 
ratio is almost 10% better than the average error ratio of 50% 
resulting from the CT model. Thus, the PS model explained 
certain proportion of human dataset fairly accurately. 
   
Table 1. Results from the calibrated PS model. The error ratio 
= 0.40 for N = 18.  
 

Combinations 
from Human Data 

and Model h/m 
Number of 

Observations 

Percentage of 
2370 

Observations 
NHNM  588.2 24.8 
MHMM  814 34.3  
NHMM  463.8 19.5  
MHNM 504 21.2 

UN 0 0 
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Next, we investigated the performance of the NMH model. 
Table 2 shows the results from this model. The model’s 
average error ratio equaled 0.44 across 2,370 observations. In 
the NMH model, the NHNM and MHMM values accounted for 
22.8% and 32.5% of all 2,370 observations, respectively. The 
best value of error ratio was for the MHMM combinations, 
where about 32.5 % of the 2,370 human observations were 
accounted by the model. The erroneous MHNM and NHMM 
combinations from the model were 23.08% and 21.5% of the 
2,370 human observations, respectively. The second best 
value accounted by the model was that for the MHNM 
combinations.  The error ratio obtained from the NMH model 
is marginally higher than that obtained from the PS model 
However, the NMH model too, classified all observations. 
Thus, like the PS model, the NMH model was able to explain 
a large dataset. The model showed an improvement of 5% 
over the CT model and performed efficiently at the individual 
level. 

 
Table 2. The high level results from the NMH model. The 
average error ratio = 0.44.  
 

Combinations 
from Human 

Data and Model 
H/M 

Average 
Number of 

Observations 

Percentage 
of 2370 

Observations 
NHNM  542.4 22.8 
MHMM  771 32.5 
NHMM 509.6 21.5 
MHNM 547 23.08 

UN 0 0 
 
Next, we evaluated the IBL model’s ability to account for 

individual final choices in the TPT dataset. The results from 
IBL model are presented in Table 3. The best calibrated 
values of d and σ in the IBL model were found to be 13.6 and 
0.22, respectively. The large d value exhibited reliance on 
recency during sampling resulting in maximization. Also, the 
small σ value exhibited lesser sample-to-sample variability in 
instance activations. The calibrated IBL model produced 
37.6% of NHNM combinations and 26.12% of MHMM 
combinations, respectively.  Having a total of comparatively 
higher values for the NHNM and MHMM combinations 
increases the accuracy of the IBL model compared to the 
NMH and PS models. In contrast, the erroneous NHMM and 
MHNM combinations were 17.9% and 18.2% respectively 
from the IBL model and both these percentages were slightly 
less than those obtained in the NMH and PS models. Thus, 
the human choices were predicted more correctly by the 
model for about 11.1% of total observations. This erroneous 
classification is about 2% higher than the same erroneous 
classification from the NMH model. Based upon above 
statistics, the IBL model’s performance was better than the 
PS and NMH models. Also, the number of uncategorized 
(UN) cases resulting from the IBL model was zero. 
Furthermore, as the average error ratio from the IBL model 

was 0.36, the model shows 14% superior performance 
compared to the CT model.  

 
Table 3. Results from the calibrated IBL model. The 
calibrated value of parameters d=13.6 and σ=0.22. The 
average error ratio= 0.36.  
 

Choice 
Combinations 
from Human 

Data and Model 

Average 
Number of 

Observations 
across 5 Runs 

Percentage 
of 2370 

Observations 

NHNM  892.6 37.6 
MHMM  619.2 26.1 
NHMM 432.8 18.2 
MHNM 425.4 17.9 

UN 0 0 
 

Table 7 shows the results summary from the PS, NMH, and 
IBL models in the calibration TPT dataset. The PS model 
gave an error ratio of 0.43. The NMH model gave an error 
ratio of 0.44, which was close to value of error ratio from the 
PS model. However, the IBL model gave an error ratio of 
0.36, which was less than that of the other two models. The 
NMH model considers the complete sample size of each 
observation as opposed to the PS model, where the PS model 
takes into consideration only last few samples of each 
observation. In this regard, we can conclude that the PS 
model is more efficient than the NMH model as it uses a 
much smaller proportion of samples for about the same error 
ratio compared to the NMH model. The IBL model’s error 
ratio is lower than the other two models; also, the IBL model 
does not have any UN observations. 

 
Table 4. Summary of results from the three DFE models on 
TPT dataset. 

 

Model Parameters 
UN 

Observations 
Error 
ratio 

PS N = 18 0 0.40 
NMH - 0 0.44 
IBL d=13.6,σ=0.22         0 0.36 

  
As the three models have different number of free 
parameters, we verified the results from these models upon a 
generalization to a different dataset (Busemeyer & Wang, 
2000). For generalization, we used the SC Problems data set. 
This dataset has 6 problems, out of which 4 are identical to 
those in the TPT dataset (one option risky and the other safe) 
and 2 problems are different from the TPT dataset (both 
options are risky). Table 5 shows generalization results from 
the PS, NMH, and IBL models (models were run with the 
parameters derived in the TPT dataset). The IBL model gave 
the best error ratio of 0.32. Also, the IBL model did not have 
any UN observations. 

 
Table 5. Summary of results from the three DFE models (SC 
Problems dataset). 
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Model UN Observations Error ratio 

PS 0 0.34 
NMH 0 0.37 
IBL 0 0.32 

 
Discussions & Conclusion 

So far, literature in judgment and decision making had 
compared models by evaluating their maximizing 
performance at the aggregate level (Gonzalez & Dutt, 2011; 
2012). In such comparisons, the average performance from a 
model was compared to the average performance from 
human data (the average was computed across several 
participants).  However, in this paper, we compared a 
model’s maximizing performance at the individual 
participant level. We used three popular and competing 
models of aggregate human choice and evaluated their 
abilities in explaining individual human choices over 
maximization criterion. Overall, in the TPT dataset, our 
results reveal that all the three models of aggregate choice 
performed average at the individual level (error ratio <44%) 
in both the calibration and generalization datasets. The IBL 
model’s strength is in its ability to account for higher number 
of maximizing human choices across a large number of 
observations. 
  Furthermore, it was found that the two models (PS and 
NMH) find it easier to explain individual maximizing choices 
compared to individual non-maximizing choices (there were 
greater proportion of MHMM combinations compared to 
NHNM combinations across the two models). However, the 
IBL model manages to explain the NHNM combinations better 
than the MHMM combinations. Also there were no UN cases 
reported across the three models. 

In addition, the PS and NMH also report a higher 
proportion of erroneous MHNM combinations compared to the 
erroneous NHMM combinations as opposed to the IBL model. 
Thus, both the models were unable to predict a maximizing 
final choice for human observations, while the IBL was able 
to do the same and had a fairly lower error ratio. This finding 
could also be due to the fact that the one of the options 
contained two outcomes compared to the single outcome in 
the other option. Thus, the greater variability experienced in 
one of the option drove a model to make choices that 
maximized over a constant value; whereas, the same 
variability drove humans to maximize upon recency. We 
generalized the models on another dataset to test this 
reasoning. In this dataset, again the IBL model performs best 
thereby proving the stability to the model. 
   We believe that this paper augurs a beginning of a larger 
research program that plans to launch an in-depth 
investigation of the presence of NHMM and MHNM cases 
among influential models of experiential choice. As part of 
future research, we would like to investigate problems where 
there are multiple options   rather than current problems 
where one options were more of binary kind. Such problems 
with two options would help us investigate the role of 
variability in affecting contradictory human and model 

choices as depicted by the MHMM cases. Furthermore, in this 
paper, we took three competing models of experiential 
choice; however, as part of future research, we plan to extend 
this investigation to a larger set of DFE models and other 
application areas that cover other theoretical ideas.  
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