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Introduction 
Memory processes drawing on declarative knowledge play 
an important role in many cognitive models, for example in 
models of decision making. Within the fast-and-frugal 
heuristics research program, several strategies have been 
proposed that describe how people infer unknown criteria 
using knowledge associated with these criteria as cues. 
Much of the success of fast-and-frugal heuristics lies in their 
ecological rationality, or fit to regularities in the 
environment. Ecological rational decision strategies exploit 
regularities in the structure of the environment as they are 
reflected in basic cognitive capacities, such as memory. 
However, little research has looked at how environmental 
structures are mapped into mental representations. The 
ACT-R architecture offers a quantitative theory about how 
patterns of occurrences and co-occurrences of information 
in the environment are reflected in the memory activation of 
corresponding chunks. In this poster, we propose an ACT-R 
based ecological memory model representing objects and 
associated knowledge contingent on environmental 
frequencies of information encoded in the corresponding 
memory chunks. Based on internet statistics, we predict 
retrieval probabilities and retrieval latencies for associative 
knowledge, which will serve, for example, as input for 
simulating the selection and performance of knowledge-
based decision strategies. A corresponding model could 
provide the missing link explaining how the interplay 
between the environment and the cognitive system promotes 
ecologically rational decision making. 

Modeling Associative Memory in ACT-R 
The basic unit of knowledge in ACT-R’s declarative 
memory is the chunk. New declarative knowledge is added 
to memory by encoding representations of objects that are 
attended in the environment. A chunk can encode discrete 
elements of information as well as associations between 
elements being attended at the same time. The type of 
pattern encoded in the chunk is given in a isa slot, whereas 
other slots indicate the relationship between the elements of 
information that is being configured together. The 
knowledge that Berlin has an airport, for example, can be 
represented in a chunk with the following structure: 

 BERLIN-AIRPORT  
  ISA   CITY_FACT  
  CITY   BERLIN  
  FACT   AIRPORT 

In addition to symbolic information, each chunk encodes 
subsymbolic information about the likelihood that the chunk 
will be needed to reach one of the system’s processing goals 
-the chunk’s activation. The likely usefulness is a Bayesian 
estimate of posterior need odds derived from the past 
usefulness of the chunk (prior odds, or history factor) as 
well as from the current context (likelihood ratio, or context 
factor). ACT-R’s theory of human associative memory 
offers a set of equations to calculate a chunk’s activation 
from these two factors. Specifically, the activation, Ai, of a 
chunk i is determined by the base-level activation, Bi, plus 
the spreading activation the chunk receives from each of the 
j elements in the current context: 

Ai= Bi +        
    (Activation). 

Assuming approximately equal spacing of encounters of a 
chunk since its time of creation L, the base-level activation 
of a chunk can be approximated by (Anderson, 1993): 

Bi = ln n/(1-d) - d ln L (History Factor), 
where d is a decay parameter and n is the number of 
encounters of the object or relation encoded by the chunk.  

In addition to the base-level activation which reflects the 
prior use of the chunk itself, a chunk receives spreading 
activation from related chunks currently attended in the 
current context. The amount of spreading activation a chunk 
receives depends on the associative strength, Sji, between 
elements j stored in the buffers and chunk i as well as on the 
weight Wj given to each source of activation.  The 
associative strength factor Sji, can be calculated from 
environmental frequencies of occurrences and co-
occurrences of chunk i and elements j according to the 
following equation (Schooler & Anderson, 1997): 

Sji =         
    

 (Context Factor), 

where P(i|j) is an estimate of the probability of i occurring 
when j is present and P(i) is the base rate of i occurring. 
Source activation is typically divided equally among the 
number of sources of activation, m, and sums to a constant, 
W, which implies that 

Wj =     (AttentionWeighting), 
In ACT-R, only chunks that exceed a certain amount of 

activation Ai, as defined by the retrieval threshold,W, can be 
retrieved. Because of the stochastic volatility in momentary 
activation levels, chunks exceed this threshold with a certain 
probability. The retrieval probability, p, for chunk i, is a 
logistic function of the chunk’s activation: 

   =  

   
     W 

 
  (Retrieval Probability), 
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where s is a scale parameter representing noise in the 
retrieval process. Given a chunk is successfully retrieved, 
the retrieval time can be expressed as an exponential 
function of the chunk’s activation: 

Ti =       (Retrieval Time). 
The above equations describe how patterns of occurrences 

and co-occurrences of objects in the environment are 
reflected in subsymbolic properties related to the activations 
and associative strengths of chunks in ACT-R’s declarative 
memory. Importantly, the chunk’s activations, in turn, allow 
for behavioral predictions about retrieval probabilities and 
retrieval times for the corresponding memories. We use 
observed retrieval probabilities and retrieval time 
distributions for knowledge about cities to calibrate our 
memory model for chunks encoding associative knowledge 
about these cities. We then use our model to predict 
people’s knowledge of and retrieval speed for cities and 
associated facts from frequency statistics obtained from the 
internet. 

Behavioral Data 
One-hundred twenty-eight students (54 female; mean age 20 
years, SD = 2.23) took part in the experiment. Participants 
received a fixed payment of 5 CHF (5.39 US$) 
supplemented by a performance bonus of up to 33 CHF 
(35.56 US$) depending on the coherence of their responses 
in the main task with responses given in a later control task 
where similar knowledge was tested. The stimuli for the 
cue-knowledge task (see Figure 1) consisted of 95 European 
cities and eight cues. Cue-knowledge tested was whether the 
city had an airport, a university, a premier league soccer 
team, the headquarters of a company listed on the stock 
market, a cathedral, a subway, a harbor, and whether it was 
served by a high-speed train line. Each city was paired with 
each of the cues, so that the items consisted of a total of 760 
city-cue pairs.  

 
 

Figure 1: Illustration of the cue-knowledge task. 
 
Participants were presented with city-attribute pairs one at 

a time in and were asked to respond with either “yes” if they 
could remember having seen or heard of the city possessing 
such an attribute or “no” if they could not remember having 
heard of this before. Responses were made by pressing keys 

on the right and left side of the keyboard. The order of 
presentation of items was randomized. All trials were 
preceded by a small fixation cross for 1,000 msec and 
participants were instructed to fixate the cross until it 
disappeared and to respond as quickly and accurately as 
possible upon stimulus onset. 

Predicting Accessibility from Internet Statistics 
We approximate memory activation Ai resulting from 
encounters with certain information in a person’s 
environment by the activation Ai,web estimated from web 
counts, the number of entries for this information in the 
knowledge base Wikipedia. 

Ai = c + b Ai,web. 
The parameters c and b serve as scaling parameters 
describing the unknown relation between how often we 
encounter an object in our environment and the web 
frequency of the corresponding search term.  

We calibrated the memory model to the log odds of 
retrieval of cue-knowledge. Subsequently, we calibrated the 
model to the observed retrieval times for retrieved cue-
knowledge. Activations for chunks encoding cue-knowledge 
estimated from web counts were then used to predict 
observed retrieval probabilities and retrieval time 
distributions.  

Conclusion 
Comparisons between observed and predicted retrieval 
probabilities, and observed and predicted retrieval time 
distributions show that our memory model is able to capture 
how the probability of retrieval and the accessibility of cue-
knowledge depends on the distribution of relevant 
information in the environment. 

Our work extends the ecological approach for populating 
the contents of declarative memory in ACT-R (e.g., 
Marewski & Schooler, 2011). Possible applications include 
the simulation of performance of and selection between 
knowledge-based inference strategies and could be used for 
any model interested in mirroring the statistical structure of 
the environment outside the laboratory. 
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