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Abstract

This paper describes a new set  of results on visual  search of 
displays of 75  objects  that  differ in size, shape, and color, and 
presents a cognitive architecture model based on the active 
vision  concept that accounts for the effects using object 
eccentricity and size effects, noisy saccades, and fixation 
memory provided by a persistent  visual store. The data 
confirm older, less complete studies of this task. The model is 
a significant refinement of earlier visual search models and 
preliminary fits show that it promises to provide an integrated 
architectural account of these effects.

Keywords: cognitive architecture, visual search; cognitive 
modeling; eye movements

Introduction
Many everyday and work activities involve visual search, 

the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. An especially tractable form of 
visual search takes place in many human-computer 
interaction tasks in which a particular icon coded by color, 
shape, and other attributes must be located on a screen and 
then clicked on using a mouse. Such visual search takes 
place in a visual environment that is much simpler than 
natural scenes, and so is a both a good theoretical and 
practical domain to model visual search processes. It 
combines relative simplicity of the visual characteristics of 
the searched-for objects with practical relevance. The task is 
a natural one in the sense that such activities are very 
common in current technology; an example is current radar 
displays in military applications, which can contain a large 
number of icons and other objects (cf. Kieras & Marshall, 
2006). Thus understanding in detail how visual search 
works in such domains can lead to better system designs. 
Kieras (2010) presented a model for the results of a classic 

study by Williams (1967), who using early film-based eye 
tracking methodology, explored the visual search of large 
and dense displays of many items that can be searched by 
multiple attributes.  He manipulated the size of the objects 
along with their color and shape,  an unusual combination in 
the visual search literature. Kieras and Hornof (2014) 
showed how the model could be used in a simpler form 

applicable to interface design problems. But some key 
issues in the model could not be addressed because Williams 
reported only a small subset of the potential data, and 
essentially no characteristics of the eye movements 
themselves. 
What’s new.  New eye movement data was collected in a 

Williams-like task that includes the complete eye movement 
trajectory and precise search completion times. This allows 
analysis of additional effects,  such as those of object size, 
saccade distance, the characteristics of fixated objects that 
do not match the search cues, refixation effects,  and so forth 
- far beyond what is possible with the Williams (1967) data.
The EPIC architecture was improved in two significant 

ways: First, the acuity functions that describe whether an 
object property can be detected as a function of object 
eccentricity and size were given the same form as 
psychophysical functions resulting from an especially 
relevant class of experiment. Second, EPIC’s eye movement 
mechanism has been completely accurate - if the cognitive 
processor issued an instruction to fixate a certain object, the 
eyes always moved exactly to that object. However, there is 
abundant literature that eye movements to a target normally 
fall short and have variability linear with the distance. EPIC 
models would thus be more efficient than humans, meaning 
that to match human data, other parameters might have to be 
distorted from their realistic values. Thus, EPIC’s 
oculomotor processor now makes “noisy” eye movements. 
To compensate, the visual search strategy has to be adapted 
to complete the task in spite of the unreliability of fixations.
Thus despite the superficial similarity of this work to the 

earlier, there are new challenges in the modeling. The work 
reported here is preliminary - there is much new ground to 
explore. First the experiment will be presented, followed by 
the architectural changes and the current modeling results. 

The Visual Search Experiment
The task was to locate a target object in a field of seventy-

five distractor objects.  Each object on the display had a 
unique two-digit number and a unique combination of color, 
size,  and shape. Participants were precued with the number 
of the target, and some combination of the target’s color, 
size, and shape.
Twenty-four participants were recruited from the 
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University of Oregon campus community. Two were 
excluded because the eye tracker could not be calibrated to 
them. All had normal or corrected-to-normal vision. 
Participants received a base payment of $10 plus a bonus 
(ranging from $5 to $8) based on their speed and accuracy.
Search fields were presented on the central 1600 x 1200 

portion of a color-calibrated Dell 2407WFP 24-inch monitor 
connected to a 3.06 GHz Intel Core 2 Duo Macbook Pro 
running Mac OS 10.8. The data collection software was 
written in C++, Objective-C, and Cocoa. Eye movement 
data were collected using a binocular 120 Hz LC 
Technologies Eyegaze tracker after a nine-point calibration. 
The monitor was positioned 60 cm from the participant. 
Each participant was presented with ninety-six search 

fields, each with seventy-five randomly arranged objects. 
Figure 1 shows one of the search fields. Each search field 
was preceded by the presentation of a precue that described 
the target in text and included the target’s two-digit number 
and, depending on the condition, some combination of the 
the target’s color, size, and shape. Because each precue 
could include any combination of the three features, 
including none, there were a total of eight possible precue 
types. Each combination was used in twelve trials,  resulting 
in the ninety-six trials per subject.
Search fields contained seventy-five objects on a 67% gray 

background that subtended 39° by 30° of visual angle. Each 
object had a unique combination of color, size, and shape. 
Colors were blue, green, yellow, red, and purple. Sizes were 
small (0.8º), medium (1.6º), and large (2.8º),  measured as 
the diameter of the circular object of that size, with other 
shapes normalized to the same area. Shapes were circles, 
semi-circles, squares, equilateral triangles, and crosses. 
Each object had a one-pixel black border.
The seventy-five unique objects were randomly distributed 

across the search field with at least one degree of visual 
angle between adjacent objects.  A unique two-digit number 
from 01 to 75 appeared in the center of each object with a 
height of 0.26° (10 pixels). The precue appeared in the 
center of the display in the same typeface, with each feature 
listed on a separate line. Participants started each trial by 
clicking on an XX above the target description.

Each successful trial proceeded as follows: (1) The precue 
appeared in the center of the display. (2) The participant 
moved the mouse and clicked on the XX. (3) The precue 
disappeared and the search field appeared. (4) The 
participant found the target. (5) The participant moved the 
mouse and clicked on the number in the target.
Participants were constrained to not move the mouse until 

they found the target by using a point-completion deadline 
(Hornof, 2001). Participants practiced until they were 
comfortable with the deadline.
Participants were rewarded for successful trials with a 

pleasant 170 ms “cha-ching” sound and penalized for error 
trials with a 350 ms buzzer. Participants were also 
financially rewarded. Each trial started with a bonus of five, 
twelve, or twenty-one cents,  depending on the difficulty of 
the condition (for example, color was easiest) and the bonus 
diminished at a rate of 0.4, 0.3, or 0.15 cents per second 
until the participant clicked on the target (stopping at zero, 
and with faster rates for easier conditions). Errors resulted in 
no bonus plus a five-cent penalty. Accumulated bonuses 
were reported to the participants every twenty-four blocks.

Results
The fixations were identified using a dispersion-based 

algorithm with a maximum dispersion window size of 0.7º 
and a minimum fixation duration of 60 ms.  The error in the 
eye tracking data was reduced using the method of required 
fixations, as described in Zhang & Hornof (2014), yielding a 
series of fixations for each trial by each subject, for a total 
of about 64 thousand fixations.
In each trial first,  last, and any offscreen (and subsequent) 

fixations were discarded. Then the apparent target of each 
fixation was designated as the object on the display whose 
center was closest to the point of fixation; these were 
considered to be the fixated objects. Then the proportion of 
fixations in which the properties of the fixated object 
matched the cue properties were calculated.  Similar 
calculations were made for other statistics, such as the 
saccade distance - the difference between the current and 
previous fixation. These statistics were accumulated for 
each subject in each condition, and means computed for 
each condition. 
In all of the graphs shown here, the observed mean values 

are plotted with solid bars, and the predicted with open bars. 
Observed values are shown with 95% confidence intervals 
for the mean based on the values averaged over subjects. 

Figure 1. A sample search field used in the experiment.
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The observed values will be discussed first; the predicted 
later in the context of the model presentation. 
First, the results were consistent with those reported by 

Williams(1967). Figure 2 shows the proportion of fixations 
on objects that matched the cued properties. E.g., if the 
color was the only specified cue, about 74% of the fixations 
were on objects with the specified color. The color cue 
produces the highest proportion of matches, followed by 
object size,  whereas object shape produces the lowest 
proportion of matches. The Number Only condition is 
shown for comparison; here a “match” just corresponds to 
whether the fixated object has the same property as the 
target object; the fact that the proportion of matches 
corresponds to their distribution in the display (five colors 
and shapes, three sizes) means that these fixations were 
basically random with regard to the color,  size, or shape of 
the object. 
These results replicate the Williams results quite well, 

showing that color is the most effective cue in guiding 
visual search, and shape is the least. But size appears to be 
more effective in these data compared to Williams, being 
similar to color, perhaps because there were only three 
different sizes, rather than four as in Williams that may have 
been difficult to discriminate.
To further compare with Williams (1967), Figure 3 shows 

the number of fixations required to complete the task for 
each cue type. The color cue requires the fewest fixations, 
followed by size, then shape, with the Number Only cue 
requiring the most. These effects also basically replicate the 
Williams results, but are more precise due to better eye 
tracking methodology. 
A new effect in these data concerns the saccade distance. If 

a cue is more effective than another in guiding visual search, 
the corresponding property of an object should be visible at 

a greater eccentricity, meaning that saccades should be 
longer on the average for more effective cues. Figure 4 
shows this effect; color cues produce the longest saccades, 
followed by size, then shape, then Number Only.  The effect 
is fairly small, but reliable, as shown by the overlap 
relations of the confidence intervals. The small size of the 
effect could be due to averaging over both matching and 
mismatching objects in the effective cue conditions.

Discussion

Visual Search and Active Vision
The empirical literature on visual search was dominated for 

a long time by studies that ruled out eye movements. But 
tasks in which the eye is free to move about a static display 
is more representative of the normal operation of the visual 
system and the role of attention in visual activity. This point 
was argued eloquently by Findlay & Gilchrist (2003) in 
presenting an active vision framework for understanding 
visual activity.
In active vision, a key process is choosing the next object 

for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that properties such as the 
color, shape, size, or orientation influences which object is 
chosen for the next fixation; the phenomenon is called 
visual guidance. These properties are available to some 
extent in extra-foveal or peripheral vision, meaning that 
visual attention, which is almost synonymous with where 
the eye is fixated, involves using extra-foveal information to 
select for detailed examination one of the objects currently 
perceived in the visual scene.
The importance of color in visual search is consistent with 

many results ranging from classic human factors studies 
(e.g. Sanders & McCormick, 1987). But in the active vision 
framework, color is not specially privileged in some way, 
but rather, various direct measurements show that the color 
of an object is visible over a wide range of eccentricity and 
object sizes (e.g. Gordon & Abramov, 1977), and so can 
often serve as an effective cue about where to look next.  The 
relative ineffectiveness of shape is likewise not due to a 
fundamental problem with shape, but rather that in many 
cases, recognizing the shape requires resolving detailed 
features that can only be seen close to the fovea. As an 
extreme of shape recognition, recognizing the text label can 
require foveal vision. 

Saccade accuracy
A general property of these data was that there are many 

fixations that appear to be between objects. The average 
distance between the fixation point and the center of the 
closest object averaged 0.99° and was similar across cue 
conditions. This inaccuracy could have three causes: (1) a 
deliberate strategy to collect information over a wider area 
than a precise fixation would allow, which seems unlikely 
given the density of the display; (2) measurement error, 
even after applying our error correction technique; (3) error 
and noise in the oculomotor system – saccades tend to fall 
short of the intended target and display some variability as 
well. In these data, there is no strong tendency for in-
between fixations to be followed by a short corrective 
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saccade to precisely fixate an object. Rather,  it seems likely 
that depending on the extent of extra-foveal vision, the eye 
can collect enough information at the "missed" fixation 
point that a person can usually correctly decide if an object 
in the vicinity is the target, and fixate another object if not. 

Repeat fixations and memory failures
One overall feature of these results is that many more 

fixations are required than should be necessary if each 
object only received one fixation; for example, it should 
require no more than 37.5 fixations on average in the 
Number-Only condition to find the labeled object, but about 
71 are performed. The data shows that 33% of the fixations 
are on a previously fixated object in this condition; in 
contrast,  the four color-cue conditions have a lower repeat 
rate of 21%.
In contrast,  some observations and modeling of repeat 

fixations (Peterson et al. 2001, Kieras & Marshall, 2006, 
Kieras, 2009, 2010) suggests that repeat fixations are 
relatively rare, around 5%, implying a good memory for 
previous fixations, and almost all are performed 
immediately, being due to recognition (encoding) failures 
rather than failures of the memory for previous fixations.
However, in these data, immediate repeats average about 

14% with little variation between cue conditions, and the 
average lag between repeat fixations is about 2.4 in the color 
cue conditions, and much higher at 12.5 in the Number-
Only condition (lag = 0 is an immediate refixation). So 
perhaps repeat fixations in these data are due to both factors: 
there are some encoding failures leading to immediate or 
almost immediate fixations, and some memory failures, 
especially in the conditions that take much longer. 

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and 

performance directly supports an active vision approach to 
visual search and provides a general framework for 
simulating a human interacting with an environment to 
accomplish a task. The reader is referred to Meyer & Kieras 
(1997) or Kieras (in press), for a more complete description 
of EPIC; here is only the necessary minimum description. 
In the EPIC architecture, the eye processor contains acuity 

functions that specify whether each visual property of each 
object is currently visible as a function of the size of the 
object and its eccentricity. The currently available visual 
properties for each object are represented in the sensory 
store; the perceptual processor then encodes the properties 
of each object, possibly in relation to other objects, and 
passes the encoded representation on to the perceptual store 
where they are available to the cognitive processor to match 
the conditions of production rules. The perceptual store 
contains the current representation of the visual world that 
cognition can reason and make decisions about,  including 
decisions about where to move the eyes next by 
commanding the ocular motor processor. 
When the eyes move away from an object, the properties 

of the object persist for a short time (e.g. 200 ms) in the 
sensory store, and when lost, the perceptual processor notes 
that the corresponding property in the perceptual store no 

longer has sensory support. After a relatively long time, the 
property will then be lost from the perceptual store.  But if 
the object disappears completely, it and all of its properties 
will be removed from the perceptual store fairly quickly. 
The notion that the representation persists for a considerable 
time as long as the scene is present is supported by studies 
summarized by Henderson & Castelhano (2005); memory 
for previously fixated objects was assessed in natural visual 
scenes, and retention times of at least several seconds were 
observed. Since this form of memory has not been studied 
extensively, its properties and duration must be chosen to fit 
the modeled data. 

Model for the Search Task
The model is an instantiation of the active vision concept; 

constructing it requires a choice of (1) visual acuity 
functions and parameters, (2) a model of the "noise" in the 
eye movements, (3) a parameter for the persistence time of 
visual properties in the perceptual store that are no longer 
sensorily supported, and (4) a set of production rules that 
implement the visual search strategy. Each of these will be 
described, with emphasis on the new features in this work.

New acuity functions
The availability of a perceptual property in extra-foveal 

vision depends heavily on the eccentricity (the distance in 
degrees of visual angle from the center of gaze) of the 
object, normally referred to in degrees of visual angle,  and 
on the size of the object (also measured in degrees of visual 
angle), and on the specific property involved. Despite the 
many decades of research on vision, the literature does not 
contain a comprehensive set of parametric data on acuity for 
different visual properties as a function of their eccentricity 
and size, especially for the density and properties typical of 
computer displays. Space limitations do not allow a review 
of the available data (see Findlay & Gilchrist, 2003). 
Previously, EPIC used simple forms of acuity functions 

that were adequate to fit the limited data such as 
Williams(1967). The new work here was to anchor the 
acuity functions closer to the available psychophysical data. 
Of special interest are studies of "cortical magnification" 
which is based on the reasoning that a constant amount of 
visual cortex (presumably supporting a certain number of 
receptive fields) are required for performing discrimination 
at a certain level, and since anatomically, the density of 
cortical representation declines with distance from the 
fovea, the size of the stimulus must increase to involve the 
same amount of cortex. Such functions have been measured 
in psychophysical experiments; a typical result (e.g. Virsu & 
Rovamo, 1979) is that to maintain discriminability, the size 
of the object must increase as a cubic function of 
eccentricity; the required size increases linearly for a 
moderate eccentricity, and then quite sharply in the further 
periphery. A cubic function with a moderate linear 
coefficient,  a zero quadratic coefficient and a very small 
cubic coefficient provides a good fit.Visual search studies 
such as Carrasco & Frieder (1996) show that if object size is 
constant, then targets at greater eccentricity are located more 
slowly, whereas if peripheral objects are magnified in size 
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according to the measured functions,  search time becomes 
flat with eccentricity. However,  it appears that magnification 
functions measured for individual objects greatly 
overestimate the acuity for objects in dense visual fields 
(e.g. see discussion in Anstis, 1974). To measure acuity in 
dense displays would be very difficult,  and the literature 
does not contain useful parametric studies. 
To deal with this non-definitive picture,  a simple family of 

acuity functions are proposed, and their parameters 
determined by a combination of general constraints set by 
the literature and iterative maximization of fit in the models. 
A separate function was specified for each property: color, 
encoded size (small, medium, large), shape, and text label. 
The acuity function is a Gaussian detection function that 
gives the probability that the property will be detected (be 
available) for an object with size s at eccentricity e:

P(detection) = P(s > N(µ, σ))
µ = a + be + ce2 + de3, σ = a constant

The form for µ (which can be interpreted as the 50% 
threshold for object size) reflects the commonly fitted form 
of cortical magnification functions. The value of σ governs 
the steepness of the ogival detection function; smaller 
values of σ make it look more like an all-or-none threshold-
like process. 
In the preliminary predicted results presented here, the 

acuity parameters were determined by informal iterative 
fitting. The a term was held at 0.05, b was estimated as 0.2 
for color,  size, and shape, and 0.1 for text, c was held at 0, d 
was 0.0004 for color and size, .025 for shape, .05 for text, 
and σ was 0.5 for color, size, and shape, and 1.0 for text.
The availability for each property is independently 

resampled for all objects whenever the eye is moved. As the 
eye moves around, the available properties of the same 
object can fluctuate, and will not be reliably available from 
one fixation to the next. However, the information, once 
acquired, will remain for some time in the perceptual store.

New model of saccade accuracy
A variety of studies (see Harris, 1995 for a review) have 

shown that saccades tend to fall short of the actual fixation 
target,  and the standard deviation of the saccade distance 
tends to be proportional to the distance. Following Harris 
(1995), the new oculomotor processor samples the distance 
for a saccade to an object at eccentricity e from a Gaussian 
distribution: 

saccade length = N(µ, σ))
µ = g·e, σ = s·µ

Typical values for g (gain) range from 0.85 - 0.95, and s 
(spread) is typically around 10%. The current preliminary 
fits use the values suggested by Harris as optimal, namely 
g=0.95, s=10%. Unlike previous EPIC models, this model 
thus often misses the object to be fixated,  which decreases 
the probability that (e.g.) its text label will be available, 
meaning that the task strategy must either attempt to fixate 
the object again, or choose a entirely different object to 
fixate. On the other hand, if the acuity functions are such 
that most fixations are close enough, there may be little 
effect of inaccurate saccades.

Fixation memory
As summarized in the task strategy below, memory for 

previous fixations was implemented by only choosing 
objects to fixate whose relevant properties are currently 
unknown, either because the object was never fixated, its 
properties were not detected, or it was fixated a long time 
ago but the properties have been lost from the perceptual 
store. As mentioned below, the duration of properties of 
visible objects in perceptual store interacts with the acuity 
functions and model strategy in predicting the properties of 
repeat fixations. For the model predictions presented here, 
this duration was set at 15 s.

New task strategy
The visual search strategy in the model is a new variation 

of a basic strategy that has been used in several EPIC visual 
search models.  There are now three concurrent threads of 
execution. In the first thread, nomination rules now 
continuously propose objects to fixate whose available 
visual properties match the cued properties. In the second 
thread, choice rules pick a single candidate from the 
nominated objects according to a priority scheme, and 
launch an eye movement to the chosen candidate. The 
priority scheme favors the more widely available attributes, 
and so chooses an object with a matching color over one 
with a matching size over one with a matching shape. If 
there are no nominations,  a “guessed” object is chosen 
whose cued properties are currently unknown. Objects are 
only nominated or chosen if their text label property is 
currently unknown, which serves as a memory for fixations, 
and if more than one object qualifies,  the closest one is 
chosen. The response rules in the third thread wait for the 
eye movement to the candidate to be complete and either 
click on the object if its text label matches the target label, 
or discard it if not, which enables the next choice of object 
to fixate. If the text label is not available (e.g. the saccade 
may have fallen short) the strategy waits for up to three 
additional cycles and then nominates the object for the next 
eye movement, which takes priority. 

Model Results
Using the parameter values and task strategy described 

above, the model was run using the actual set of stimuli 
used in the experiment, which consisted of 2112 
combinations of cue condition, search fields, and target 
object within that search field, with 4 repetitions of these 
stimuli, giving 1056 trials in each experimental condition, 
and the simulated eye movement and response time data 
were collected. These fits are preliminary, but encouraging; 
further work is in progress.
Figures 2-4 above show the observed and predicted 

statistics in each condition. As a summary measure of the 
goodness of fit of predicted to observed, r2=0.89 for the 
proportions of matching fixations in Figure 2; r2=0.92 for 
the number of fixations in Figure 3, and r2=0.79 for the 
saccade distances in Figure 4, where it is clear that the 
distances for the weak cues of Shape and Number-Only are 
seriously under-predicted. In results not shown graphically, 
the predicted RTs are well correlated with the observed 
(r2=0.92), but the model over-predicts them substantially, 

59



probably due to suboptimal methods for disqualifying a 
fixated object. Most seriously, the overall predicted repeat 
rates are too high (41 vs 25% in the observed data), 
especially in the weak cue conditions; increasing the 
property decay time from 15 s to 20 s or more improves the 
fit, but then the number of fixations is under-predicted in the 
weak cue conditions. 

Guided versus unguided fixation choices
An insight from this preliminary modeling work is that 

there are basically two kinds of fixation choices: a guided 
fixation when the object matches a cue, and an unguided 
fixation when there is no candidate that has a matching cue 
property. While unguided fixations dominate the Number-
Only condition, they clearly play a role in the other cue 
conditions, because fixations to non-matching objects make 
up a quarter or more of the fixations in these conditions.
For unguided fixations, the model strategy must choose a 

next object on some basis; if this strategy is incorrect, then 
all of the summary statistics for a cue condition will be mis-
predicted. Several strategies have been explored, but no 
clear winner is yet evident - for example,  choosing a 
qualified candidate at random, rather than the closest, 
produces a different pattern of mis-predictions in the weak 
cue conditions. The next steps in this work will separate 
fixations on matching objects from non-matching, which 
should help characterize guided versus unguided fixation 
choice strategies.

Conclusion
This model represents a realization of the active vision 

concept in terms of a computational cognitive architecture 
whose components incorporate noisy saccades, size and 
eccentricity effects in perception, and a persistent visual 
perceptual store that represents the current visual situation 
and provides a memory for previous fixations. The task 
strategy implements visual guidance by using the supplied 
target properties and the information in the visual perceptual 
store to choose the next object to fixate. The adequacy of 
the architecture, and a deeper understanding of the 
functional properties of the visual system, will emerge as 
the model is developed to more closely account for the eye 
movement data.
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