
Modeling Password Entry on a Mobile Device

Melissa A. Gallagher (melissa.gallagher@rice.edu)
Department of Psychology, MS-25

Houston, TX 77005 USA

Michael D. Byrne (byrne@rice.edu)
Departments of Psychology and Computer Science, MS-25

Houston, TX 77005 USA

Abstract

Password authentication is a widely deployed security feature
on desktop and mobile systems. Inputting complex passwords
on mobile devices can be an onerous task. The composition of
the passwords creates a unique challenge for people to input
as not all characters are displayed on the keyboard at the same
time, forcing the user to switch between multiple screens. The
results from a previous study informed an ACT-R model of
password input on mobile devices. The timing data generated
from the model fits the experimental results well. The strategy
that the model employs compliments the results from the
experiment providing further information into the strategy
subjects employed. Validated models of password input on
mobile devices are an important tool that can aid designers in
usability testing and security professionals when creating new
password policies.

Keywords: Passwords; mobile typing; touchscreens; human
factors; useable security.

Introduction
Twelve characters long, one number, one uppercase letter,
and one special character; password must contain at least
two of the following types of characters: letters, numbers,
and symbols; these are just two examples of enforced
password policies meant to make passwords more secure.
Many systems now set a minimum length as well as force
users to include non-alphabetic characters in their password.
The policies are enforced by the system because they give
the passwords high entropy. Passwords are considered high-
entropy if they are long and contain a variety of character
types. This combination makes them harder to crack using a
brute force attack. As the computational power of computers
increases, systems are increasingly enforcing password
policies that make them high-entropy. These policies vary
from system to system and make passwords not only
difficult to remember but difficult to input. At the same time
users are creating more and more accounts with different
systems and must remember an ever-increasing number of
passwords (Florencio & Herley, 2007). But there is
recognition that the user is an integral part of the security of
the overall system (Adams & Sasse, 1999). Being able to
test the effects of new password policies prior to enforcing
them would be beneficial to security professionals as well as
users of the system.

Inputting passwords on mobile devices presents a unique
challenge for the users not present on desktop systems.
Commonly typed characters are always visible on physical

keyboards; on mobile devices characters are on multiple
screens that the user must shift between. Navigating
between different screens not only increases the number of
taps before the character can be input but it also requires the
user to remember the keyboard screen, or screen depth, in
addition to the location of the character. Now users must
recall the password, keep track of a character’s position
within a password, its spatial location on the keyboard, and
its relative screen depth. This becomes even more
complicated if the current character is available on multiple
screens. Passwords of longer length provide more
opportunities for input error. These differences can place
significant perceptual-motor and cognitive demands on
users. Figure 1 shows the layout of the keyboard at the
different screen depths on an iPhone.

Figure 1. The categories of keys based on their screen depth
and type on an iPhone

45

ACT-R (Anderson, 2007) is a multi-domain cognitive
architecture for simulating and understanding human
cognition and performance. ACT-R’s current typing ability
is comparable to that of a moderately skilled touch typist.
Moderately skilled is defined as typing about 30-40 WPM
and knowing the location of the keys without having to look
for them but not performing as rapidly as an expert typist
(John, 1996). Das and Stuerzlinger (2007) built an ACT-R
model simulating expert text input on a cellular telephone
with a 12-button telephone keypad using multi-tap as the
input method. Multi-tap is an older system of text entry
where the user presses a key to cycle through the letters
associated with that key; for example pressing “6” twice
would produce an “N.” With the proliferation of
smartphones, this older input method is much less common
today as smartphones supply full keyboards as well as other
methods for text input. A validated ACT-R model of text
input on a smartphone is not available. In making progress
toward building a working model of password input on
mobile devices, a model of the typing portion of password
input was built in isolation from the memory component.
Since the models are expandable, as more aspects of the task
need to be modeled, the model can change to incorporate
errors and the memory component of the task.

Modeling
An ACT-R model was built to model the input speed from
the password transcription typing experiments in Gallagher
(2014). The task presented subjects with a string similar to a
high entropy password. The string was always present at the
top of the screen. Subjects were instructed to type the string
exactly as it appeared as quickly and accurately as possible.
Two of the experimental results heavily influenced the
strategy employed by the model. The first result was that as
subjects progressed through this task their input speed
increased because they spent less time on the page before
inputting the target character. The second result was that
throughout the experiment subjects did not navigate
efficiently between keyboard screen depths. The model was
built to provide insight into some of the performance
aspects of the task that were not explained by the subject
data alone. One question was why did the time spent on the
page before symbols were typed remain slower than non-
symbols. A second question was how were subjects
searching through keyboard screens to find the characters
they were less familiar with.

Method
Data Modeled
The model was constructed based on the subjects who
interacted with the smartphone using one finger to input
text. We took interkey interval (IKI) as our primary
dependent measure rather than the more coarse measure of
words per minute. This has the advantage of increasing the
constraint on the model, since matching only global
performance obscures details of how that performance
arises. Furthermore, this allowed us to focus on error-free

performance, since WPM also includes error correction,
which was beyond the scope of this initial inquiry.

There were six character categories: Lowercase,
Uppercase, Number, Symbol1, Symbol2, and Symbol3.
These categories were determined based on which screen
depth characters were on, whether a shift key was required,
and their type. The letters were in the categories Lowercase
and Uppercase, and were distinguished by case due to the
shift key having to be pressed prior to inputting an
uppercase letter. The category Number represented the
numbers, which are on screen depth 2; Symbol1 represented
the symbols that were visible only on the same page as the
numbers. The decision to separate these two groups was
because we hypothesized that subjects would be more
familiar with where the numbers were on the screen and in
relation to each other than they would be with the symbols.
Symbol2 represented the symbols that were visible only on
screen depth three. Symbol3 were the symbols that were
visible on both screen depth 2 and 3. Figure 1 shows the
location of the key categories.

Materials
Since there is no way to interface ACT-R directly with the
iOS simulator, a custom environment was built in Common
Lisp for the model to interact with. The model environment
mimicked the mobile application used by the subjects. The
arrangement, space, and size of the interface elements were
the same. Figure 2 shows the two interfaces. The interface
elements that are unique to the mobile application, like the
touch keyboard and the masking password field, were
reconstructed as accurately as possible in the model
environment.

Figure 2. The layout of the iOS application (left) and the
simulated Lisp environment (right)

The keyboard was built so that the visible key size was

the same as the visible key size in the mobile application,
but the functional key size extended beyond that. Since the
exact functional key size is not publicly available
information, the simulated keyboard evenly split the
difference between adjacent keys. Another feature unique to

46

the mobile application that was reconstructed was the visual
change on a key press. When a key is pressed an enlarged
version of that key is displayed above the regular position of
the key; upon release of the press the enlarged version of the
key disappears. In the mobile application, the password field
shows the character for a short amount of time after it is
typed before masking it with an asterisk. If characters are
typed into the password field in rapid succession then the
characters are masked as the next key is input even if the
normal time before masking has not expired. The password
field used in the model environment recreated this behavior
and used a time of one second before masking the most
recently typed character. The mouse device module in ACT-
R was used as a stand-in for a finger in touch interactions.

Design
The model was given a moderate amount of knowledge in
declarative memory. For all characters on the keyboard, the
model knew if they were letters, numbers, or symbols. The
model knew the locations and screen depths of all the letters
and numbers. The model only knew the location and screen
depth of symbols that were presented to the subjects in the
practice blocks of the experiment. For all other symbols, the
model did not start with the knowledge of their location or
screen depth. The final part of the model’s knowledge was
which keyboard change key needed to be pressed to
navigate between different screens. These assumptions were
based on most subjects’ familiarity with a QWERTY
keyboard, the relationship between numbers, and the
experienced gained from doing the practice block.

Find Text at
Top of Screen

Identify Next
Character

Request
Character

Information from
Declarative

Memory

Seek Out and
Input

Character

Find and Click
Done Key

No Next Character

Yes
Next

Character

Figure 3. The overall model strategy

The overall strategy that the model employed to input the
stimuli was straightforward, a flowchart of it is shown in
Figure 3. At the beginning of each trial the model would
determine where the stimulus was by picking out the text
that was at the top of the screen. The model would then shift
visual attention to the text, identify what the first character
was, and store it in the goal buffer. The model would then
make a recall request to the declarative memory for all
available information regarding that character. Either just
the type of the character would be recalled or the type of the
character, the screen depth, and the location of the key. The
model would then seek out and input that character. Once
the character was input the model would shift visual
attention back to the stimulus and pick out the next

character. This process repeated for all the characters in the
stimulus. After the last character was input, the model
would shift attention back to the stimulus and identify there
were no more characters and seek out the done key. To
identify the done key the model would both shift visual
attention and the mouse in parallel to the keyboard key in
the bottom right of the screen, identify it was the done key,
and click on it.

Request Character
from Declarative

Memory

Check Current
Screen Depth

Check if on
Screen Depth 1

Move Visual Attention
and Hand to Recalled

Location

Request Key to
Change to Target

Screen Depth

Find unattended
Key on screen

Attend and
Verify Key

Move Hand
to Key

Change to Screen
Depth 2

Verify Correct
and

Initiate Tap
Find Text at Top of

Screen

Correct

Type
Screen Depth
Location

Type

Initiate TapWait for Tap
to Complete

Incorrect Key Correct Key

Found a KeyNo

Incorrect

Change to Target
Screen Depth

Select Incorrect
Key

Successful
Failure

Change to Other
Symbol Screen

No Key Found

Verify Type of
Character

Letters
Numbers

Symbols

Store Key
Location

Figure 4. The process the model used to seek out and input a
character. The grey box is where the process starts.

The different strategies for seeking out and inputting the

characters were based on their category and whether or not
the model knew where the key was located. Figure 4
illustrates the process and corresponds to the box “Seek Out
and Input Character” in Figure 3. The location and screen
depth of the letters and number keys were always recalled
correctly. The model took an aggressive approach to
inputting letters and numbers by doing as many actions in
parallel as possible. After recalling the character, if the
model was on the correct screen depth it would move both
visual attention and the mouse to the key location in
parallel. Once visual attention shifted to the key the model
would verify that it was the correct key and as soon as the
hand reached the key a press action was initiated. Once the
press action was initiated, the model would shift visual
attention back to the stimulus to determine the next
character. For keyboard change keys as well as the shift key
the model would move the mouse and visual attention in
parallel. When changing the keyboard the model had to wait
for the press action to complete and the keyboard to change
before it could shift visual attention. When the target
character was a symbol of a known location the model took
a more conservative input approach and the process was
similar but conducted in a serial manner. If the model was at
the correct screen depth it would shift visual attention to the
key first, verify it was the correct key and then move the
mouse toward the key and initiate the press action after
arriving. The model waited until the press action was
complete before shifting attention back to the stimulus to
determine the next character. If the model was searching for
a symbol when the key location was not known it would

47

start the search from the first page of symbols it encountered
and randomly select an unattended key and compare it to the
target character. This process continued until the target key
was found or there were no more unattended symbols. If
there were not more unattended symbols it would switch to
the next page of symbols and start searching there. On
screen depth two it did not search through the numbers. If
the model started on screen depth one it would switch to
screen depth two and start the search there. If the model
started on screen depth two or three it would start searching
on that page and switch to the other one if it was unable to
find the key on the starting page. Once the model
successfully located the symbol the location and screen
depth were added to declarative memory.

To navigate between screens the model had to correctly
recall the key necessary to switch between the current
screen and target screen. If the model was unable to recall
the correct key it would select the incorrect key. The
majority of the extra taps between categories subjects made
occurred when the previous character was a number or a
symbol and the target character was also a number or a
symbol. The number of transitional taps to and from letters
was closer to the minimum. Due to the difference in number
of taps, the chunks represented by those transitions
involving letters started with higher base-level activation
than the chunks representing the transitions between number
and symbols.

There are three processes in the model that vary in the
amount of time they take to complete. The first two are
related to the recall of chunks from declarative memory.
Recall times for this model are based on base-level
activation and a random noise component. The chunks
representing character keys started with a higher level of
activation and recall for them never failed. The amount of
time to recall did vary based on the activation decay and the
random noise component. For the chunks representing the
character transitions the initial activation started lower so
that they would not always be recalled. The time to navigate
between screens was influenced by recall time as well as
success or failure of recall. The third source of variation is
the visual search time when a symbol’s screen and location
are not known. The preceding character determines the page
the model is on before it starts starting searching for a
symbol and the order it examines keys is random, the
amount of time it takes to find a symbol varies for each run.

To approximate touch screen interaction we used the
mouse in place of the finger, similar to Salvucci, Taatgen,
and Kushleyeva (2006).

Results
To be able to compare the subject data and the model data,
the procedure from Byrne (2013) was used determine the
number of times the model needed to be run to build a 95%
confidence interval within 5% of the mean interkey
intervals. The model was run 20 times to estimate the
coefficient of variation for each of the interkey interval. The
largest coefficient of variation was used in the computation,

and the minimum number of model runs was determined to
be 93. One hundred model runs were performed.

The interkey interval for each pair of categories for the
model and the subjects can be seen in Figure 5 and Figure 6.
The matched pairs of the model and subject data are shown
in Figure 7. The results of a simple linear regression
indicated that the model was able to predict 88% of the
variance (R2 = .88, subject = 0.69 * model + 0.58). The
mean absolute deviation of the model from the subject data
was 260 ms or 15.7%. Figure 8 and Figure 9 show the
average number of taps the model and the subjects made
transitioning between character categories. A simple linear
regression indicated that the model was able to predict 90%
of the variance (R2 = .90, subject = 0.95 * model - 0.15).
The mean absolute deviation of the model from the subject
data was 0.22 taps.

Figure 5. IKI for transitions from Lowercase, Number, and
Uppercase

Figure 6. IKI for transitions from Symbol1, Symbol2, and
Symbol3

48

Figure 7. Matched Pair IKI between the subjects and the
model

Figure 8. Average number of taps between character
categories

Figure 9. Average number of taps between character
categories

Discussion
The strategy that the model uses highlights the three main
reasons why inputting high-entropy passwords on mobile
devices is slow. The first is different strategies are employed
for different character categories. The model and subjects
are able to efficiently input characters they are familiar with
but take a more conservative approach when inputting
symbols. The second reason is that the model does not have
knowledge of where the symbols are and has to locate the
symbols the first time they are input. The third reason is not
being able to navigate efficiently across screen depths. Like
the subjects, the model does not navigate efficiently across
pages and will not always take the shortest path to the
correct page.

These deficiencies in task performance highlight ways
that passwords could be structured to improve task
performance. Concerning which symbols are selected, using
ones on the first page reduces the amount of time spent
searching through keyboard screens. Rather than using
symbols that subjects are unfamiliar with, symbols that are
input frequently could be used so that subjects are more
likely to remember their location on the screen. While using
high-frequency symbols subjects may eventually employ a
less conservative approach when inputting the symbols as
they grow more accustomed to it. With regard to inefficient
navigation, not using characters from the different symbol
screens in sequence would be beneficial because it would
eliminate the need to navigate across screens. If the user
could modify the keyboard layout, they could place the
symbols they would like to use more frequently on the first
screen. This would aid them in search time, as they know
which symbols they use most and could give them priority.
These recommendations for structuring passwords and
keyboard designs could be tested with the model to
determine if there are performance benefits.

For example, take the passwords Af_3+2=5_Fa! and
aAfF235__+=!. They are both twelve characters long,
comprised of the same characters, and meet the
requirements of having at least two characters of each type.
The first one was created using recommendations for
memorability, Addition fact _ 3+2=5 _ Fact addition!. The
second one rearranged the characters so that they were in
order of screen depth. To predict input time without the
variability introduced by visual search the model was
modified so that it knew the locations of all the symbols.
With this modification the model predicts an input time of
24.57s in landscape and 24.12s in portrait for the first
version and 15.99s in landscape and 15.59s in portrait. For
the first password the model inefficiently navigated on two
transitions but never inefficiently navigated on the second
version. Arranging the characters in an order that allows
them to be input in the most efficient manner gives a
savings of almost 10 seconds.

49

Future Modeling Directions
There are a number of steps that could be taken to improve
the model’s performance in the remaining categories. When
typing a Number the model is faster when coming from
Symbol1 and Symbol3 than the subjects are. One of the
reasons that this happens is because the model never
misidentifies the page that it is on while subjects do and will
navigate off of screen depth two even when they do not
have to. When typing a character in Symbol2 the model is
slower than subjects for all preceding character categories
except Symbol2. One of the reasons that this could be
happening is the model is using completely random visual
search. There are six symbols that are part of the category
Symbol2 that are pairs, [] { } and < >. If a subject knows
the location and screen depth of one of members of a pair,
they can use that information to more quickly find the other
member of that pair instead of blindly searching for it.
Additionally if subjects are searching and find one half of
the pair they can use this as a cue to find the other half
where the model just continues searching randomly.

In advancing the model forward the first major change to
make would be to have the model make errors when
inputting the stimuli. This can likely be accomplished by
turning on motor movement noise in ACT-R. With noise on
the model would not always successfully acquire the target
key and would also not always land in the center of the key.
This would introduce the most common kind of errors,
adjacent key errors. The subject data indicates that while not
all errors are caught and corrected the majority of them are.
Therefore the model’s strategy would need to change so that
sometimes it would verify the input. After inducing the
model to make errors, the next step in development would
be to branch out to the other input styles and devices.
Additionally, there may be variations in subject strategy.
Subjects may keep more than one character in working
memory at a time instead of referring to the stimuli after
each character is typed.

Additionally this model only used an iPhone. Further
research needs to be done to be able to generalize to other
iOS devices and platforms, e.g., Android and Windows
Phone, and the variety of devices they run on. Using
Android phones. Now that the size of iPhones has increased
and alternative keyboards are available for iOS, these new
features can be tested to see if they provide any advantage
when typing passwords.

Conclusions and General Discussion
Although mobile device keyboards were designed to be
similar to physical keyboards, they are not the same and
many of the limitations of the mobile device make typing
passwords slower. One of the main factors in the slow input
speed is inputting the symbols. While the model learns the
location of the symbols the initial act of searching through
the keyboards screens is time consuming. Compounding the
slow down is the conservative approach taken during the
typing process to ensure accuracy. Since the model does not
navigate between the symbol pages and number pages

efficiently it could be helpful for passwords to not require
symbols and numbers in sequence. Having a working model
of password input on mobile devices has a number of
benefits. When presented with novel passwords, the model
can make predictions of password typing time. This is
especially useful because as new password policies are
generated they can be tested to see if they are detrimental or
beneficial to improving input speed. In addition to different
password policies, different keyboard designs can be tested
prior to implementation. Typing the password is only one
component of authentication and needs to be incorporated
with work that looks at the cognitive component as well.

Acknowledgments
This research was supported by the National Institute of
Standards and Technology under grant #2012-NIST-MSE-
01. The views and conclusions contained herein are those of
the authors and should not be interpreted as representing the
official policies or endorsements, either expressed or
implied, of NIST, the U.S. Government, or any other
organization. The authors would like to thank Clayton
Stanley for his help with the Lisp programming.

References
Adams, A., & Sasse, M. A. (1999). Users are not the enemy.

Communications of the ACM, 42(12), 40-46.
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford University
Press.

Byrne, M. D. (2013). How Many Times Should a Stochastic
Model Be Run? An Approach Based on Confidence
Intervals. In The 12th International Conference on
Cognitive Modeling, 445-450.

Das, A., & Stuerzlinger, W. (2007). A cognitive simulation
model for novice text entry on cell phone keypads.
Proceedings of the 14th European conference on
Cognitive ergonomics: invent! explore!, 141-147.

Florencio, D, & Herley, C. (2007). A large-scale study of
web password habits. Proceedings of the 16th
international conference on World Wide Web, 657-666.

Gallagher, M. A. (2015) Modeling Password Entry on
Mobile Devices: Please Check Your Password and Try
Again, Doctoral Dissertation, Rice University, Houston
TX.

John, B. E. (1996). TYPIST: A theory of performance in
skilled typing. Human-computer interaction, 11(4), 321-
355.

Salvucci, D. D., Taatgen, N. A., & Kushleyeva, Y. (2006).
Learning when to switch tasks in a dynamic multitasking
environment. Paper presented at the Proceedings of the
seventh international conference on cognitive modeling,
268 –273.

50

