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Abstract 

Password authentication is a widely deployed security feature 
on desktop and mobile systems. Inputting complex passwords 
on mobile devices can be an onerous task. The composition of 
the passwords creates a unique challenge for people to input 
as not all characters are displayed on the keyboard at the same 
time, forcing the user to switch between multiple screens. The 
results from a previous study informed an ACT-R model of 
password input on mobile devices. The timing data generated 
from the model fits the experimental results well. The strategy 
that the model employs compliments the results from the 
experiment providing further information into the strategy 
subjects employed. Validated models of password input on 
mobile devices are an important tool that can aid designers in 
usability testing and security professionals when creating new 
password policies. 

Keywords: Passwords; mobile typing; touchscreens; human 
factors; useable security. 

Introduction 
Twelve characters long, one number, one uppercase letter, 
and one special character; password must contain at least 
two of the following types of characters: letters, numbers, 
and symbols; these are just two examples of enforced 
password policies meant to make passwords more secure. 
Many systems now set a minimum length as well as force 
users to include non-alphabetic characters in their password. 
The policies are enforced by the system because they give 
the passwords high entropy. Passwords are considered high-
entropy if they are long and contain a variety of character 
types. This combination makes them harder to crack using a 
brute force attack. As the computational power of computers 
increases, systems are increasingly enforcing password 
policies that make them high-entropy. These policies vary 
from system to system and make passwords not only 
difficult to remember but difficult to input. At the same time 
users are creating more and more accounts with different 
systems and must remember an ever-increasing number of 
passwords (Florencio & Herley, 2007). But there is 
recognition that the user is an integral part of the security of 
the overall system (Adams & Sasse, 1999). Being able to 
test the effects of new password policies prior to enforcing 
them would be beneficial to security professionals as well as 
users of the system. 

Inputting passwords on mobile devices presents a unique 
challenge for the users not present on desktop systems. 
Commonly typed characters are always visible on physical 

keyboards; on mobile devices characters are on multiple 
screens that the user must shift between. Navigating 
between different screens not only increases the number of 
taps before the character can be input but it also requires the 
user to remember the keyboard screen, or screen depth, in 
addition to the location of the character. Now users must 
recall the password, keep track of a character’s position 
within a password, its spatial location on the keyboard, and 
its relative screen depth. This becomes even more 
complicated if the current character is available on multiple 
screens. Passwords of longer length provide more 
opportunities for input error. These differences can place 
significant perceptual-motor and cognitive demands on 
users. Figure 1 shows the layout of the keyboard at the 
different screen depths on an iPhone. 

 

 
 

Figure 1. The categories of keys based on their screen depth 
and type on an iPhone 
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ACT-R (Anderson, 2007) is a multi-domain cognitive 
architecture for simulating and understanding human 
cognition and performance. ACT-R’s current typing ability 
is comparable to that of a moderately skilled touch typist. 
Moderately skilled is defined as typing about 30-40 WPM 
and knowing the location of the keys without having to look 
for them but not performing as rapidly as an expert typist 
(John, 1996). Das and Stuerzlinger (2007) built an ACT-R 
model simulating expert text input on a cellular telephone 
with a 12-button telephone keypad using multi-tap as the 
input method. Multi-tap is an older system of text entry 
where the user presses a key to cycle through the letters 
associated with that key; for example pressing “6” twice 
would produce an “N.” With the proliferation of 
smartphones, this older input method is much less common 
today as smartphones supply full keyboards as well as other 
methods for text input. A validated ACT-R model of text 
input on a smartphone is not available. In making progress 
toward building a working model of password input on 
mobile devices, a model of the typing portion of password 
input was built in isolation from the memory component. 
Since the models are expandable, as more aspects of the task 
need to be modeled, the model can change to incorporate 
errors and the memory component of the task. 

Modeling 
An ACT-R model was built to model the input speed from 
the password transcription typing experiments in Gallagher 
(2014). The task presented subjects with a string similar to a 
high entropy password. The string was always present at the 
top of the screen. Subjects were instructed to type the string 
exactly as it appeared as quickly and accurately as possible. 
Two of the experimental results heavily influenced the 
strategy employed by the model. The first result was that as 
subjects progressed through this task their input speed 
increased because they spent less time on the page before 
inputting the target character. The second result was that 
throughout the experiment subjects did not navigate 
efficiently between keyboard screen depths. The model was 
built to provide insight into some of the performance 
aspects of the task that were not explained by the subject 
data alone. One question was why did the time spent on the 
page before symbols were typed remain slower than non-
symbols. A second question was how were subjects 
searching through keyboard screens to find the characters 
they were less familiar with.  

Method 
Data Modeled 
The model was constructed based on the subjects who 
interacted with the smartphone using one finger to input 
text. We took interkey interval (IKI) as our primary 
dependent measure rather than the more coarse measure of 
words per minute. This has the advantage of increasing the 
constraint on the model, since matching only global 
performance obscures details of how that performance 
arises. Furthermore, this allowed us to focus on error-free 

performance, since WPM also includes error correction, 
which was beyond the scope of this initial inquiry. 

There were six character categories: Lowercase, 
Uppercase, Number, Symbol1, Symbol2, and Symbol3. 
These categories were determined based on which screen 
depth characters were on, whether a shift key was required, 
and their type. The letters were in the categories Lowercase 
and Uppercase, and were distinguished by case due to the 
shift key having to be pressed prior to inputting an 
uppercase letter. The category Number represented the 
numbers, which are on screen depth 2; Symbol1 represented 
the symbols that were visible only on the same page as the 
numbers. The decision to separate these two groups was 
because we hypothesized that subjects would be more 
familiar with where the numbers were on the screen and in 
relation to each other than they would be with the symbols. 
Symbol2 represented the symbols that were visible only on 
screen depth three. Symbol3 were the symbols that were 
visible on both screen depth 2 and 3. Figure 1 shows the 
location of the key categories.  

 
Materials 
Since there is no way to interface ACT-R directly with the 
iOS simulator, a custom environment was built in Common 
Lisp for the model to interact with. The model environment 
mimicked the mobile application used by the subjects. The 
arrangement, space, and size of the interface elements were 
the same. Figure 2 shows the two interfaces. The interface 
elements that are unique to the mobile application, like the 
touch keyboard and the masking password field, were 
reconstructed as accurately as possible in the model 
environment.  
 

 
 

Figure 2. The layout of the iOS application (left) and the 
simulated Lisp environment (right) 

 
The keyboard was built so that the visible key size was 

the same as the visible key size in the mobile application, 
but the functional key size extended beyond that. Since the 
exact functional key size is not publicly available 
information, the simulated keyboard evenly split the 
difference between adjacent keys. Another feature unique to 

46



the mobile application that was reconstructed was the visual 
change on a key press. When a key is pressed an enlarged 
version of that key is displayed above the regular position of 
the key; upon release of the press the enlarged version of the 
key disappears. In the mobile application, the password field 
shows the character for a short amount of time after it is 
typed before masking it with an asterisk. If characters are 
typed into the password field in rapid succession then the 
characters are masked as the next key is input even if the 
normal time before masking has not expired. The password 
field used in the model environment recreated this behavior 
and used a time of one second before masking the most 
recently typed character. The mouse device module in ACT-
R was used as a stand-in for a finger in touch interactions.  
 
Design 
The model was given a moderate amount of knowledge in 
declarative memory. For all characters on the keyboard, the 
model knew if they were letters, numbers, or symbols. The 
model knew the locations and screen depths of all the letters 
and numbers. The model only knew the location and screen 
depth of symbols that were presented to the subjects in the 
practice blocks of the experiment. For all other symbols, the 
model did not start with the knowledge of their location or 
screen depth. The final part of the model’s knowledge was 
which keyboard change key needed to be pressed to 
navigate between different screens. These assumptions were 
based on most subjects’ familiarity with a QWERTY 
keyboard, the relationship between numbers, and the 
experienced gained from doing the practice block. 
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Figure 3. The overall model strategy 
 

The overall strategy that the model employed to input the 
stimuli was straightforward, a flowchart of it is shown in 
Figure 3. At the beginning of each trial the model would 
determine where the stimulus was by picking out the text 
that was at the top of the screen. The model would then shift 
visual attention to the text, identify what the first character 
was, and store it in the goal buffer. The model would then 
make a recall request to the declarative memory for all 
available information regarding that character. Either just 
the type of the character would be recalled or the type of the 
character, the screen depth, and the location of the key. The 
model would then seek out and input that character. Once 
the character was input the model would shift visual 
attention back to the stimulus and pick out the next 

character. This process repeated for all the characters in the 
stimulus. After the last character was input, the model 
would shift attention back to the stimulus and identify there 
were no more characters and seek out the done key. To 
identify the done key the model would both shift visual 
attention and the mouse in parallel to the keyboard key in 
the bottom right of the screen, identify it was the done key, 
and click on it. 
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Figure 4. The process the model used to seek out and input a 
character. The grey box is where the process starts. 

 
The different strategies for seeking out and inputting the 

characters were based on their category and whether or not 
the model knew where the key was located. Figure 4 
illustrates the process and corresponds to the box “Seek Out 
and Input Character” in Figure 3. The location and screen 
depth of the letters and number keys were always recalled 
correctly. The model took an aggressive approach to 
inputting letters and numbers by doing as many actions in 
parallel as possible. After recalling the character, if the 
model was on the correct screen depth it would move both 
visual attention and the mouse to the key location in 
parallel. Once visual attention shifted to the key the model 
would verify that it was the correct key and as soon as the 
hand reached the key a press action was initiated. Once the 
press action was initiated, the model would shift visual 
attention back to the stimulus to determine the next 
character. For keyboard change keys as well as the shift key 
the model would move the mouse and visual attention in 
parallel. When changing the keyboard the model had to wait 
for the press action to complete and the keyboard to change 
before it could shift visual attention. When the target 
character was a symbol of a known location the model took 
a more conservative input approach and the process was 
similar but conducted in a serial manner. If the model was at 
the correct screen depth it would shift visual attention to the 
key first, verify it was the correct key and then move the 
mouse toward the key and initiate the press action after 
arriving. The model waited until the press action was 
complete before shifting attention back to the stimulus to 
determine the next character. If the model was searching for 
a symbol when the key location was not known it would 
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start the search from the first page of symbols it encountered 
and randomly select an unattended key and compare it to the 
target character. This process continued until the target key 
was found or there were no more unattended symbols. If 
there were not more unattended symbols it would switch to 
the next page of symbols and start searching there. On 
screen depth two it did not search through the numbers. If 
the model started on screen depth one it would switch to 
screen depth two and start the search there. If the model 
started on screen depth two or three it would start searching 
on that page and switch to the other one if it was unable to 
find the key on the starting page. Once the model 
successfully located the symbol the location and screen 
depth were added to declarative memory.  

To navigate between screens the model had to correctly 
recall the key necessary to switch between the current 
screen and target screen. If the model was unable to recall 
the correct key it would select the incorrect key. The 
majority of the extra taps between categories subjects made 
occurred when the previous character was a number or a 
symbol and the target character was also a number or a 
symbol. The number of transitional taps to and from letters 
was closer to the minimum. Due to the difference in number 
of taps, the chunks represented by those transitions 
involving letters started with higher base-level activation 
than the chunks representing the transitions between number 
and symbols. 

There are three processes in the model that vary in the 
amount of time they take to complete. The first two are 
related to the recall of chunks from declarative memory. 
Recall times for this model are based on base-level 
activation and a random noise component. The chunks 
representing character keys started with a higher level of 
activation and recall for them never failed. The amount of 
time to recall did vary based on the activation decay and the 
random noise component. For the chunks representing the 
character transitions the initial activation started lower so 
that they would not always be recalled. The time to navigate 
between screens was influenced by recall time as well as 
success or failure of recall. The third source of variation is 
the visual search time when a symbol’s screen and location 
are not known. The preceding character determines the page 
the model is on before it starts starting searching for a 
symbol and the order it examines keys is random, the 
amount of time it takes to find a symbol varies for each run.  

To approximate touch screen interaction we used the 
mouse in place of the finger, similar to Salvucci, Taatgen, 
and Kushleyeva (2006). 

 
Results 
To be able to compare the subject data and the model data, 
the procedure from Byrne (2013) was used determine the 
number of times the model needed to be run to build a 95% 
confidence interval within 5% of the mean interkey 
intervals. The model was run 20 times to estimate the 
coefficient of variation for each of the interkey interval. The 
largest coefficient of variation was used in the computation, 

and the minimum number of model runs was determined to 
be 93. One hundred model runs were performed. 

The interkey interval for each pair of categories for the 
model and the subjects can be seen in Figure 5 and Figure 6. 
The matched pairs of the model and subject data are shown 
in Figure 7. The results of a simple linear regression 
indicated that the model was able to predict 88% of the 
variance (R2 = .88, subject = 0.69 * model  + 0.58). The 
mean absolute deviation of the model from the subject data 
was 260 ms or 15.7%. Figure 8 and Figure 9 show the 
average number of taps the model and the subjects made 
transitioning between character categories. A simple linear 
regression indicated that the model was able to predict 90% 
of the variance (R2 = .90, subject = 0.95 * model  - 0.15). 
The mean absolute deviation of the model from the subject 
data was 0.22 taps. 

 
 

Figure 5. IKI for transitions from Lowercase, Number, and 
Uppercase 

 
 

Figure 6. IKI for transitions from Symbol1, Symbol2, and 
Symbol3 
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Figure 7. Matched Pair IKI between the subjects and the 
model 

 

 
 

Figure 8. Average number of taps between character 
categories 

 

 
 

Figure 9. Average number of taps between character 
categories 

Discussion 
The strategy that the model uses highlights the three main 
reasons why inputting high-entropy passwords on mobile 
devices is slow. The first is different strategies are employed 
for different character categories. The model and subjects 
are able to efficiently input characters they are familiar with 
but take a more conservative approach when inputting 
symbols. The second reason is that the model does not have 
knowledge of where the symbols are and has to locate the 
symbols the first time they are input. The third reason is not 
being able to navigate efficiently across screen depths. Like 
the subjects, the model does not navigate efficiently across 
pages and will not always take the shortest path to the 
correct page.  

These deficiencies in task performance highlight ways 
that passwords could be structured to improve task 
performance. Concerning which symbols are selected, using 
ones on the first page reduces the amount of time spent 
searching through keyboard screens. Rather than using 
symbols that subjects are unfamiliar with, symbols that are 
input frequently could be used so that subjects are more 
likely to remember their location on the screen. While using 
high-frequency symbols subjects may eventually employ a 
less conservative approach when inputting the symbols as 
they grow more accustomed to it. With regard to inefficient 
navigation, not using characters from the different symbol 
screens in sequence would be beneficial because it would 
eliminate the need to navigate across screens. If the user 
could modify the keyboard layout, they could place the 
symbols they would like to use more frequently on the first 
screen. This would aid them in search time, as they know 
which symbols they use most and could give them priority. 
These recommendations for structuring passwords and 
keyboard designs could be tested with the model to 
determine if there are performance benefits. 

For example, take the passwords Af_3+2=5_Fa! and 
aAfF235__+=!. They are both twelve characters long, 
comprised of the same characters, and meet the 
requirements of having at least two characters of each type. 
The first one was created using recommendations for 
memorability, Addition fact _ 3+2=5 _ Fact addition!. The 
second one rearranged the characters so that they were in 
order of screen depth. To predict input time without the 
variability introduced by visual search the model was 
modified so that it knew the locations of all the symbols. 
With this modification the model predicts an input time of 
24.57s in landscape and 24.12s in portrait for the first 
version and 15.99s in landscape and 15.59s in portrait. For 
the first password the model inefficiently navigated on two 
transitions but never inefficiently navigated on the second 
version. Arranging the characters in an order that allows 
them to be input in the most efficient manner gives a 
savings of almost 10 seconds. 
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Future Modeling Directions 
There are a number of steps that could be taken to improve 
the model’s performance in the remaining categories. When 
typing a Number the model is faster when coming from 
Symbol1 and Symbol3 than the subjects are. One of the 
reasons that this happens is because the model never 
misidentifies the page that it is on while subjects do and will 
navigate off of screen depth two even when they do not 
have to. When typing a character in Symbol2 the model is 
slower than subjects for all preceding character categories 
except Symbol2. One of the reasons that this could be 
happening is the model is using completely random visual 
search. There are six symbols that are part of the category 
Symbol2 that are pairs, [ ] { } and < >. If a subject knows 
the location and screen depth of one of members of a pair, 
they can use that information to more quickly find the other 
member of that pair instead of blindly searching for it. 
Additionally if subjects are searching and find one half of 
the pair they can use this as a cue to find the other half 
where the model just continues searching randomly. 

In advancing the model forward the first major change to 
make would be to have the model make errors when 
inputting the stimuli. This can likely be accomplished by 
turning on motor movement noise in ACT-R. With noise on 
the model would not always successfully acquire the target 
key and would also not always land in the center of the key. 
This would introduce the most common kind of errors, 
adjacent key errors. The subject data indicates that while not 
all errors are caught and corrected the majority of them are. 
Therefore the model’s strategy would need to change so that 
sometimes it would verify the input. After inducing the 
model to make errors, the next step in development would 
be to branch out to the other input styles and devices. 
Additionally, there may be variations in subject strategy. 
Subjects may keep more than one character in working 
memory at a time instead of referring to the stimuli after 
each character is typed. 

Additionally this model only used an iPhone. Further 
research needs to be done to be able to generalize to other 
iOS devices and platforms, e.g., Android and Windows 
Phone, and the variety of devices they run on. Using 
Android phones. Now that the size of iPhones has increased 
and alternative keyboards are available for iOS, these new 
features can be tested to see if they provide any advantage 
when typing passwords. 

Conclusions and General Discussion 
Although mobile device keyboards were designed to be 
similar to physical keyboards, they are not the same and 
many of the limitations of the mobile device make typing 
passwords slower. One of the main factors in the slow input 
speed is inputting the symbols. While the model learns the 
location of the symbols the initial act of searching through 
the keyboards screens is time consuming. Compounding the 
slow down is the conservative approach taken during the 
typing process to ensure accuracy. Since the model does not 
navigate between the symbol pages and number pages 

efficiently it could be helpful for passwords to not require 
symbols and numbers in sequence. Having a working model 
of password input on mobile devices has a number of 
benefits. When presented with novel passwords, the model 
can make predictions of password typing time. This is 
especially useful because as new password policies are 
generated they can be tested to see if they are detrimental or 
beneficial to improving input speed. In addition to different 
password policies, different keyboard designs can be tested 
prior to implementation. Typing the password is only one 
component of authentication and needs to be incorporated 
with work that looks at the cognitive component as well. 
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