
A specification-aware modeling of mental model theory for syllogistic reasoning
Yutaro Sugimoto1 and Yuri Sato2

1Department of Philosophy, Keio University 2Interfaculty Initiative in Information Studies, The University of Tokyo
sugimoto@abelard.flet.keio.ac.jp, sato@iii.u-tokyo.ac.jp,

Abstract

Computational cognitive models can embody the structures
and processes proposed in a cognitive theory. However, they
do not necessarily reveal the theory’s underlying assumptions
and specifications. This study aims to bridge the gap between
cognitive theory and its computational implementation, focus-
ing on a case of mental model theory on human reasoning.
Using a mathematics-based and statically-typed programming
language (Haskell), we provide a specification-aware compu-
tational implementation of syllogistic reasoning with mental
models.

keywords: Mental model theory, Type system, Specification,
Cognitive modeling, Logical reasoning.

Introduction
The specification problem in cognitive modeling
In cognitive science research, mental representations and pro-
cesses underlying human cognition have been treated in anal-
ogy with computer programs consisting of data structures and
algorithms.However, it is not always easy to understand the
relationship between the two in cognitive theories employ-
ing natural language for description. This occasionally leads
to ambiguous formulations of cognitive theories. To remove
these ambiguities, researchers have developed computer im-
plementations of these theories.This type of modeling has re-
vealed more detailed structures and processes than the exist-
ing formulations using natural language.

Recently, some researchers have questioned whether or not
cognitive models should actually reveal theory specifications.
McClelland (2009) pointed out that computational cognitive
modelings are not full accounts of cognitive theories; imple-
mentations are not intended to embody the aspects of a the-
ory’s assumptions or specifications that are loosely defined
in a cognitive theory. However, Cooper and Guest (2014) ar-
gue that McClelland (2009) downplays the role of modeling
in theory specification, and in particular the possibility that
a model might embody a set of assumptions (p. 43). To rem-
edy this, they suggest that it is necessary to improve the cur-
rent situation whereby modeling approaches are not suitable
for theory specification, by bridging the gap between com-
putational implementation and cognitive theory. The present
study was conceived in a similar vein. We introduce a mod-
eling method consisting of full-fledged descriptions of theory
specifications: “type system based modeling.”

A case of mental model reasoning
Cognitive studies involving the mental model theory, which
was introduced by Johnson-Laird (1983; 1984), are appropri-
ate examples with which to discuss the specification problem
in cognitive modeling. The mental model theory is a cognitive

[a] b c −b
[a] b c −b

b
b

1st premise model 2nd premise model

All A are B Some C are not B

[a] b [a] b c
[a] b [a] b c

−b c −b c
−b c −b c

Integrated model Alternative model

Fig 1: Syllogistic reasoning with mental models

theory of sentence interpretation and inference. The theory
was first formulated for categorical syllogisms, but has now
been extended to various domains of reasoning (for a review,
see Khemlani & Johnson-Laird, 2013). Syllogism with quan-
tificational sentences is one of the most elementary forms of
natural language inference, and is important in the analysis of
human reasoning (cf. Moss, 2008). The present study consid-
ers the domain of syllogisms only, focussing on the recent
version (Bucciarelli & Johnson-Laird, 1999) and its corre-
sponding computer implementation (Mental Models & Rea-
soning Lab, abbreviated as MMRLab.1).

Natural language description Syllogistic reasoning pro-
cesses in mental model theory as described with natural lan-
guage are briefly illustrated below. The basic idea underlying
the theory is that people interpret sentences by constructing
mental models corresponding to possibilities and make in-
ferences by constructing counter-models. (1) Mental models
consist of a finite number of tokens, denoting the properties of
individuals. All A are B has a model illustrated on the leftmost
side of Fig.1, where each row represents an individual. A row
consisting of two tokens, a and b, refers to an individual that
is A and B. The tokens with square brackets, [a], express that
the set containing them is exhaustively represented by these
tokens and that no new tokens can be added to it. A sequence
of tokens without square brackets can be extended with new
tokens so that an alternative model is constructed. (2) Some C
are not B has a model illustrated on the second from the left
of Fig.1. A row with a single token, b, refers to an individ-
ual that is B but not C. A row consisting of two tokens, c and
–b, refers to an individual that is C but not B, by using “–” to
denote negation. (3) These two models for premises are inte-
grated into a single model, as shown in the second from the
right in Fig.1. Two tentative conclusions, Some A are not C
and Some C are not A, are extracted. (4) To search counterex-
ample for them, an alternative model is constructed by adding
new tokens (token c), as shown in the rightmost side of Fig.1.
Since each token of A is corresponding to tokens of C, Some

1As described on p.14 of Khemlani and Johnson-Laird (2013),
the major part of the program code for syllogistic fragments (MM-
RLab) still lives on in another implementation of the mental model
theory, what is called mReasoner, which can cope with various do-
mains beyond categorical syllogisms.

31

A are not C is refuted. Instead, Some C are not A survives.

Modeling implementations Following the theory infor-
mally described above, Johnson-Laird and his colleagues
have developed several computational cognitive models,
some of which have been published (p. 443 of Khemlani &
Johnson-Laird, 2012). Their implementation of syllogisms is
found in MMRLab. It is written in Common Lisp and a men-
tal model is represented as a list, which is the most basic data
structure in Lisp. For example, the 1st and 2nd premises mod-
els in Fig. 1 are represented as lists:

(((* A) (B)) ((* A) (B)))

(((C) (- B)) ((C) (- B)) ((B)) ((B)))

Their implementation of mental model theory was successful
in embodying structures and processes proposed in the theory
but it was unable to fully account for its specification. More
concretely, it lacked a mathematical formalization of the con-
cept of a “mental model.” This ambiguity has resulted in var-
ious misunderstandings of the theory, and most of the con-
troversy around the theory in cognitive science and logic has
focused on this point (Braine, 1994; Hintikka, 1987; Stenning
& Van Lambalgen, 2008). It is therefore important to under-
stand the nature of the theory by addressing the specification
problem.

Beyond the specification problem
Formal modeling A possible method to bridge the gap be-
tween implementation and theory is to convert natural lan-
guage description theories to formal systems. This method
is called formal cognitive modeling: structures and processes
described in a theory are decomposed at a more abstract
(mathematical) level than existing implementations (e.g.,
Arkoudas & Bringsjord, 2008; Bosse, Jonker, & Treur, 2006).
Koralus and Mascarenhas’s (2013) modeling is an example
of this approach. They constructed a formal (propositional)
inference system, called “the erotetic theory of reasoning”,
which essentially corresponds to mental model reasoning. (i)
They started by converting from mental models to algebraic
structures such as ptq, consisting of representational units (p
and q standing for propositions) and operations (t standing
for conjunction), which can be translated to logical formu-
las such as p∧ q. Here non-standard semantics, not model-
theoretic semantics, were given for the interpretations of sen-
tences. (ii) Update (erotetic) rules for adding the new premise,
which is treated as an answer to the question in discourse, and
operation rules for making inference as refutation were given.
(iii) In this system, soundness and completeness for classical
propositional semantics were shown via translation.

To our knowledge, Koralus & Mascarenhas’s work is the
first major formalization of mental model reasoning.2 This

2Recently, Clark (submitted) straightforwardly provided a spec-
ification of mental model theory using total and partial truth func-
tions, which correspond to exhaustive and non-exhaustive models.

approach has at least an advantage in analyzing computa-
tional complexities of solving tasks rather than predicting hu-
man performance data of them (for more details see e.g. Ver-
brugge, 2009; Isaac, Szymanik, & Verbrugge, 2014). How-
ever, this modeling is abstract in that it can be implementa-
tion-independent. Therefore it may not address problems
caused by a particular representation in a cognitive theory.
Thus, certain specifications, such as the mental models defi-
nition may not be provided at an appropriate level.

Specification-aware modeling An alternative way to
bridge the gap between implementation and theory is to use
a programming language suitable for specification descrip-
tions, which we call specification-aware cognitive modeling.
This approach was manifested in the seminal study of Cooper
et al. (1996). According to them, (i) ordinary (Lisp and C)
implementations themselves do not include the specifications
of cognitive theories; (ii) formal theories of specifications,
including mathematical descriptions, are not appropriate for
bridging the gap between implementation and theory since
they are implementation-independent. In our view, Johnson-
Laird’s mental model implementation in Common Lisp corre-
sponds to case (i) and the formal modeling approaches of Ko-
ralus and Mascarenhas (2013) correspond to case (ii). Alter-
natively, Cooper et al. (1996) have provided some cognitive
modeling implementations written by an executable specifi-
cation language Sceptic, consisting of the declarative (logic
programming) language Prolog, with the additional device of
control structures. Their implementations include the mental
model theory for syllogistic reasoning (for more details, see
Cooper, 1992)3. Here, rewrite rules obey certain mathemati-
cal manipulations, such as rewriting from one term to another,
as is the case in lambda calculus. This rewriting can be re-
garded as a specification in itself. Furthermore, an advantage
of declarative language is that one can check the logical re-
lationships between input and output representations without
specifying a strategy of computation. (cf. sec.3 of Cooper &
Guest, 2014).

This study put forward the line of specification-aware mod-
eling. We try to give a “computational” (i.e. executable) se-
mantics for the mental model theory. For the purpose of this
research, we consider a reconstruction based on type system
(cf. Mitchell, 2003). We refer to this approach as type system
based modeling. Importantly, we chose a purely-functional
programming language Haskell that has strong static typing
and lazy evaluation strategy (Jones, 2003; Marlow, 2010). In
contrast to the Common Lisp language used in Johnson-Laird
and his colleagues’ implementation (MMRLab), Haskell is a
purely functional programming language with strong static
typing. Explicit type annotations are useful for defining men-
tal models within the system, and Haskell encourages to pro-

3Based on Sceptic, the COGENT environment for cognitive
modeling has subsequently been developed. An application to men-
tal model theory is found in chap.5 of Cooper (2002). It is intended
to provide theory specifications by reconstructing information-
processing models such as box-and-arrow diagrams.

32

gram in a declarative style. This property can contribute to
reasoning about the program itself (e.g. to give a denotational
semantics for it Haftmann, 2010; Vytiniotis et al., 2013). It
is important not only to guarantee the fact that a program is
executable (there is no syntactical error), but also to verify
whether a program works as intended by theorists (the aspect
of semantics.) Note that this brief paper focuses on a part of
the long-term study. Just a relatively weak formal verification
(static type-checking based on explicit typing) is available
here. To provide a formal verification by a theorem prover
or other semantic verifications leave for future work.

An Implementation of the Mental Model
Reasoning System

An outline of the reasoning system is given in Sugimoto,
Sato, and Nakayama (2013). The system is portrayed as a
conceptual diagram Fig. 2 that shows translations from one
model to another by the following steps: 1. constructing men-
tal models of premises, 2. integrating these premise mod-
els into an initial (integrated) model, 3. drawing a tentative
conclusion from the initial model, 4. constructing alternative
models by falsification, 5. producing a final conclusion.

Mental
Model

P1

INPUT
P1

Mental
Model

P2

INPUT
P2

Integrated
Model

1.construction

1.construction

2.integration

OUTPUT
C

5.drawing conclusion

(falsification fail)

Alternative

Model

4. alternative

model search

(falsification success)

5.drawing

conclusion

(falsification fail)

3. drawing

tentative

conclusion

4. alternative

model search

(falsification success) 3.drawing

tentative

conclusion

Fig 2: Diagram for syllogistic reasoning system

Steps 1 and 5 involve IO actions. Steps 2, 3 and 4 consist of
stateless (no side effects) functions only.

Mental model construction
The syllogistic language (input) is considered as a kind of
controlled natural language, and its grammar can be defined
by BNF+. We define a combinator parser to parse this lan-
guage instead of using a standard bottom-up parser (MMR-
Lab.) An implementation of the language and the parser is
given in Code 1:
pS,pNp,pNegNp :: Parser String String
pPred,pNegPred :: Parser String String
pTerm,pQuant,pNegQuant :: Parser String String
pNeg,pCop :: Parser String String
pS = pNp <*> pPred <|> pNp <*> pNegPred <|> pNegNp <*> pPred
pNp = pQuant <*> pTerm
pNegNp = pNegQuant <*> pTerm
pPred = pCop <*> pTerm
pNegPred = pCop <*> pNeg <*> pTerm
pTerm = symbol "A" <|> symbol "B" <|> symbol "C"
pQuant = symbol "All" <|> symbol "Some"
pNegQuant = symbol "No"
pNeg = symbol "not"
pCop = symbol "are"

type Parser a b = [a] -> [(b,[a])]
symbol :: Eq a => a -> Parser a a
symbol c [] = []
symbol c (x:xs) | c == x = [(x,xs)]

| otherwise = []
succeed :: b -> Parser a b
succeed r xs = [(r,xs)]
failp :: Parser a b
failp xs = []
token :: Eq a => [a] -> Parser a [a]
token cs xs | cs == take n xs = [(cs,drop n xs)]

| otherwise = []
where n = length cs

satisfy :: (a -> Bool) -> Parser a a
satisfy p [] = []
satisfy p (x:xs) | p x = [(x,xs)]

| otherwise = []

Code 1: The definition for syllogistic language and its parser

data MToken = AToken Atom |
FToken Exh Atom | NToken Neg Atom | Nil

data Atom = ASymbol | BSymbol | CSymbol
type Symbol = Char

type Exh = Symbol
type Neg = Symbol
type Nil = Symbol
type ASymbol = Symbol
type BSymbol = Symbol
type CSymbol = Symbol

type MModel = [Indiv]
type Indiv = [Token]
type Token = [Symbol]

exh :: Symbol
exh = ’*’
asymbol :: Symbol
asymbol = ’a’
bsymbol :: Symbol
bsymbol = ’b’
csymbol :: Symbol
csymbol = ’c’
neg :: Symbol
neg = ’-’

Code 2: The definition for mental model components

The mental models for syllogistic reasoning are defined in
Code 24. A mental model is a class of models5 s.t. m×n ma-
trix (multi-list) of tokens. A row or an individual of a men-
tal model is a finite sequence of tokens (model) where each
atom occurs at most once. A column or a (property) of a men-
tal model is a finite sequence of tokens where tokens con-
taining different atoms cannot occur. If square bracketed to-
kens occur in a column, only negative tokens can be added.
The translation from the syllogistic language to mental model
representations is performed by monadic parsing (a recursive
descent parsing technique well known in functional program-
ming community. See, e.g. Van Eijck and Unger 2010). The
parser for syllogistic language constructs abstract syntax trees
and then converts mental model representations by the fol-
lowing compositional semantics (Fig. 2). As an example, let
X,Y denote terms A,B,C, the four types of syllogistic sen-
tences can be translated to mental models as follows:

All X are Y

⇒ [x] y
[x] y

Some X are Y

⇒
x y
x

y

No X are Y
⇒

[x] −y
[x] −y

[y]
[y]

Some X are not Y

⇒
x −y
x −y

y
y

4In Bucciarelli and Johnson-Laird (1999) “exhaustive model” is
represented in square brackets, here we use the “*” symbol as used
elsewhere (MMRLab.)

5For a treatment of a mental model as a class of models, see
Barwise (1993).

33

(a)

Mental

Model

P1

Mental

Model

P2

Match

Find

Middle

Atom

Integrated

Model

M

combine :: MModel → MModel → MModel

find middle atom :: MModel → MModel → Atom

match :: MModel → MModel → Atom → MModel

join :: Atom → Indiv → Indiv → Indiv

—————————————————————–

(b) conclude

negative individual
: False

negative individual
: True

all_isa : True

sm_isa : True

otherwise

no_isa & exh : True

sm_not_isa : True

otherwise

"NVC"

"NVC"

"All X
 are Y"

"Some X
 are Y"

"No X
 are Y"

"Some X
 are not Y"

conclude :: Symbol → MAtom → Symbol → MModel → Ans

all isa :: MModel → Symbol

sm isa :: MModel → Symbol

no isa :: MModel → Symbol

sm not isa :: MModel → Symbol

—————————————————————–

(c) falsify

negative_individual :
False

negative_individual :
True

breaks : True

add_affirmative : True

otherwise

moves : True

add_negative : True

otherwise

Failed

Failed

Broken

Model

Added

Model

Moved

Model

Add-

Neg-ed

Model

falsify :: [Symbol] → MModel → MModel

breaks :: MModel → MModel

add affirmative :: MModel → MModel

moves :: MModel → MModel

add negative :: MModel → MModel

Fig 3: Process diagrams and their type information: (a) Inte-
gration, (b) Drawing a conclusion, (c) Falsification

Integrating Premises into Initial Model

We give a description of the integration process of premises
into an initial model via mid term tokens (Fig. 3-a.) The
integration function combine takes two models (premises)
P1, P2 and returns an integrated model M with the help of
find a middle atom. The type signature for this function is
integration :: MModel → MModel → MModel. This is im-
plemented as follows:

combine :: MModel -> MModel -> MModel
combine mod1 mod2 =

match mid_atom mod1 mod2
where mid_atom = find_middle_atom mod1 mod2

Reordering and Switching Since syllogisms have several
“figures” according to the order of their premises and term ar-
rangements, the actual integration should occur after the pre-
processes of reordering terms and switching premises. This
preprocessing consists of the following four patterns: (1) If
the term order of P1 is AB and P2 is BC, nothing happens. (2)
If the term order of P1 is BA and P2 is CB, integration starts
with P2. (3) If the term order of P1 is AB and P2 is CB, the
second model is swapped round and added. (4) If the term
order of P1 is BA and P2 is BC, the first model is swapped
round and the second model added.
Finding a middle atom The function find middle atom
has a type signature find middle atom :: MModel →
MModel → Symbol . The implementation of this is similar
to a set intersection operation for the affirmative tokens (to-
kens that do not contain negatives.) An example is when two
premises are presented as in Fig.1, {a,a,b,b}∩{c,c,b,b} =
b. The following is an implementation:
find_middle_atom :: MModel -> MModel -> Symbol
find_middle_atom mod1 mod2

| null mod1 = []
| not (null mid) = mid
| otherwise = find_middle_atom (tail mod1) mod2
where mid = find_middle_from_ind (head mod1) mod2

Match The function for matching premises P1, P2, and mid-
dle atom a has the type signature match :: MModel →
MModel → Symbol → MModel . This function recursively
calls join to join the premises to an integrated model.
match :: Symbol -> MModel -> MModel -> MModel
match mid_atom mod1 mod2

| null mod1 = mod2
| not (null (find_poslis_in_indiv mid_atom $ head mod1)) =

joining mid_atom (head mod1) mod2 :
(match mid_atom

(tail mod1)
(remove_indiv (find_poslis_in_mod mid_atom mod2) mod2))

| otherwise = head mod1 : (match mid_atom (tail mod1) mod2)

Join The recursive function join takes a mid atom and
two individuals, and joins two individuals together setting the
new mid to exhausted if either the first individual or second
individual were exhausted. The type signature of join is:
join :: Symbol → Indiv → Indiv → Indiv
join_ :: Symbol -> Indiv -> Indiv -> Indiv
join_ mid_atom indiv1 indiv2 =

if exhausted $ find_poslis_in_indiv mid_atom indiv1
then indiv1 ++ remove_lis (find_poslis_in_indiv mid_atom indiv2) indiv2
else remove_lis (find_poslis_in_indiv mid_atom indiv1) indiv2

Drawing a Conclusion from a Model
Drawing a conclusion (Fig.3-b) is a function that takes an
integrated (initial) model and dispatches whether it con-
tains negative token or not. Based on the predicates (all isa,
some isa, no isa, and sm not isa) it then dispatches fur-
ther and returns corresponding answers (action). conclude
has type signature: conclude :: Symbol → Symbol →
Symbol → MModel → [Symbol] 6. If the predicates re-
turn False , then it returns "no valid conclusion" . The
below is an implementation:

6Note: since possible conclusions have term order: Subj-Obj and
Obj-Subj, conclude is executed twice. For simplicity, we omit the
second execution of conclude .

34

conclude :: Symbol -> Symbol -> Symbol -> MModel -> [Symbol]
conclude subj mid_atom obj model =

if not (negative_individual model)
then if all_isa subj obj model

then "all " ++ [subj] ++ " are " ++ [obj]
else if sm_isa subj obj model

then "some " ++ [subj] ++ " are " ++ [obj]
else "no valid conclusion"

else if no_isa subj obj model &&
((exh_ subj model && exh_ obj model) ||
(exh_ mid_atom model && exh_ subj model) || (exh_ obj model))

then "no " ++ [subj] ++ " are " ++ [obj]
else if sm_not_isa subj obj model

then "some " ++ [subj] ++ " are " ++ "not " ++ [obj]
else "no valid conclusion"

The following are sub functions called by conclude:
all isa takes a model M that has the end terms X, Y and
returns True iff all subjects are objects in individuals in a
model, then conclude returns the answer All X are Y. This
has a type signature: all isa :: Symbol → Symbol →
MModel → Bool . For example, if a model M: [a] b c

[a] b c
is given, where the end terms are A and C, it returns the an-
swer ”All A are C.” This is implemented as follows:
all_isa :: Symbol -> Symbol -> MModel -> Bool
all_isa subj obj model =

sm_isa subj obj model && not (sm_not_isa subj obj model)

sm isa takes a model M that has end terms X, Y and returns
True iff at least one individual in the model contains posi-
tive occurrences of both subject and object atoms. Then con-
clude returns the answer ”Some X are Y”. This has the type
signature: sm isa :: Symbol → Symbol → MModel →
Bool . For example, if a model:

[a] [b] c
[a] [b]

c
is given where

the end terms are A and C, it returns the answer ”Some A are
C”.
sm_isa :: Symbol -> Symbol -> MModel -> Bool
sm_isa subj obj model

| null model = False
| not (null $ find_poslis_in_indiv subj $ head model) &&
not (null $ find_poslis_in_indiv obj $ head model) = True

| otherwise = sm_isa subj obj $ tail model

no isa takes a model M that has the end terms X, Y and
returns True iff no subject end term is object end term in any
individuals in the model, conclude returns ”No X are Y”. This
has a functional type: no-isa : M →A. For example, if a model

M:
[a] −b
[a] −b

[b] [c]
[b] [c]

is given where the end terms are A and C,

it then returns the answer ”No A are C”.

no_isa :: Symbol -> Symbol -> MModel -> Bool
no_isa subj obj model =

sm_not_isa subj obj model && not (sm_isa subj obj model)

sm not isa takes a model M that has the end terms X, Y
and returns True iff at least one subject occurs in individuals
without an object, then conclude returns “Some X are not Y”.
This has a functional type: sm not isa: M →A. For example,

if a model M:
[a] b c
[a] b c

−b c
−b c

is given where the end terms are

A and C, it returns the answer ”Some A are not C”.
sm_not_isa subj obj model

| null model = False
| not (null $ find_poslis_in_indiv subj $ head model) &&
not (null $ find_poslis_in_indiv obj $ head model) = True

| otherwise = sm_not_isa subj obj $ tail model

Falsification
Once the mental model theory constructs an initial model
and draws a tentative conclusion, the theory, according to its
rules, tries to construct an alternative model to refute the con-
clusion (the default assumption). The falsification function
(Fig. 3-c) takes a model and dispatches whether or not it con-
tains a negative token. Then, based on the predicates (breaks,
add affirmative, moves, and add negative), it tries to mod-
ify the model. If successful, it returns an alternative model
and calls conclude recursively. If it fails, this function termi-
nates and conclude outputs a final conclusion. The below is
an implementation of falsify:
falsify :: [Symbol] -> MModel -> MModel
falsify concl model =

if not (negative_individual model)
then if not (null br_model) then br_model

else if not (null ad_model) then ad_model
else []

else if not (null mv_model) then mv_model
else if not (null an_model) then an_model

else []
where

br_model = breaks concl model
ad_model = add_affirmative concl model
mv_model = moves concl (neg_breaking concl model)
an_model = add_negative concl model

Here are the main constructs of falsify:
breaks finds an individual containing two end terms with
non-exhaustive mid terms, divides it into two, and then ei-
ther returns new (broken) model or returns nil. Its type signa-
ture is: breaks : MModel → MModel . For example: when a
model M is a b c , then breaks M ; a b

b c . This
is implemented as follows:
breaks :: [Symbol] -> MModel -> MModel
breaks concl model =

if falseif model newmod
then newmod
else []

where newmod = breaking concl model

add affirmative has the type signature: add affirmative
:: MModel → MModel. If add affirmative succeeds, then it
returns a new model with added item (added model), else it
returns nil if the conclusion is not A-type (“All X are Y”)
or if there is no addable subject item. For example, if a
given model M is [a] [b] c

[a] [b] c , then add affirmative M ;

[a] [b] c
[a] [b] c

c
.

add_affirmative :: [Symbol] -> MModel -> MModel
add_affirmative concl model =

if not (a_conclusion concl) then []
else if not (null subj)

then if subj == first then [[first]] : model
else if subj == last then model ++ [[[last]]] else []

else []
where
subj = addable (subject concl) model
end_terms = find_ends concl model
first = head end_terms
last = head $ tail end_terms

moves has the type signature: moves :: MModel → MModel.
If there are exhausted end items not connected to other end
items or their negatives (i.e E-type (”No X are Y”) conclu-
sions), and if the other end items are exhausted, or O-type
(”Some X are not Y”) conclusions, then it joins them. Other-
wise it joins one of each and returns nil if the first end item

35

cannot be moved, regardless of whether or not a second one
can be. E.g., if a given model M is

[a] −b
[a] −b

[b] −c
[b] −c

[c]
[c]

, then moves M ;

[a] −b [c]
[a] −b [c]

[b] −c
[b] −c .

When this function is called by falsify, neg breaking (similar
procedure to breaks) is also called as an argument.
moves :: [Symbol] -> MModel -> MModel
moves concl model =

if falseif model newmod
then newmod
else []
where newmod = moving concl model

add negative has the type the signature: add negative ::
MModel → MModel. It returns a new model with the added
item (add neged model), or returns nil if the conclusion is
not O-type or if there is no addable subject item.
E.g., if a given model M is
[a] b
[a] b

−b c
−b c

, then add negative M ;
[a] b c
[a] b c

−b c
−b c

.

add_negative :: [Symbol] -> MModel -> MModel
add_negative concl model =

if falseif model newmod
then newmod
else []
where newmod = adding_neg concl model

Concluding Remarks
We have proposed type system based modeling as a novel ap-
proach in (specification-aware) cognitive modeling. To show
the advantages of this approach, we have implemented the
syllogistic reasoning system with mental models in Haskell
(a popular pure functional statically typed programming lan-
guage). Compared with other approaches, our implementa-
tion includes some aspects of theory specification such as
mental model definitions and type information for each pro-
cess. Our type system based modeling sheds light on the am-
biguity problem of mental model theory, which has been dis-
cussed at the crossroad between cognitive science and logic.
In the modeling work done so far, we have analyzed men-
tal model reasoning for syllogistic fragments. However, our
work is not limited to this. There is plenty of scope for further
work in several kinds of mental model reasoning (Khemlani
& Johnson-Laird, 2013; Johnson-Laird, Byrne, & Tabossi,
1989; Johnson-Laird & Byrne, 1989); more generally, var-
ious cognitive activities involving propositions taking some
semantic values.

Acknowledgements
This study was supported by MEXT-Supported Program for the
Strategic Research Foundation at Private Universities and Grant-in-
Aid for JSPS Fellows (25·2291). The authors are grateful to Sangeet
Khemlani for helpful comment and Micah Clark for opportunity to
read his paper under submission.

References
Arkoudas, K., & Bringsjord, S. (2008). Toward formalizing

common-sense psychology: An analysis of the false-belief task.
In PRICAI 2008 (pp. 17–29). Springer.

Barwise, J. (1993). Everyday reasoning and logical inference. Be-
havioral and Brain Sciences, 16(2), 337–338.

Bosse, T., Jonker, C. M., & Treur, J. (2006). Formalization and
analysis of reasoning by assumption. Cognitive Science, 30(1),
147–180.

Braine, M. D. (1994). Mental logic and how to discover it. In The
logical foundation of cognition (pp. 241–263). Oxford Univ Pr.

Bucciarelli, M., & Johnson-Laird, P. N. (1999). Strategies in syllo-
gistic reasoning. Cognitive Science, 23(3), 247–303.

Clark, M. H. (submitted). Mathematical description of senten-
tial mental models theory: Reconstructing Johnson-Laird’s mental
models.

Cooper, R. (1992). A sceptic specification of Johnson-Laird’s “men-
tal models” theory of syllogistic reasoning (Tech. Rept. UCL-
PSY-ADREM-TR4 (2nd ed.)). Department of Psychology, Uni-
versity College London.

Cooper, R. (2002). Modelling high-level cognitive processes. Psy-
chology Press.

Cooper, R., Fox, J., Farringdon, J., & Shallice, T. (1996). A system-
atic methodology for cognitive modelling. Artificial Intelligence,
85(1), 3–44.

Cooper, R., & Guest, O. (2014). Implementations are not speci-
fications: Specification, replication and experimentation in com-
putational cognitive modeling. Cognitive Systems Research, 27,
42–49.

Haftmann, F. (2010). From higher-order logic to haskell: there and
back again. In Proceedings of the 2010 ACM SIGPLAN workshop
on partial evaluation and program manipulation (pp. 155–158).

Hintikka, J. (1987). Mental models, semantical games and vari-
eties of intelligence. In Matters of intelligence (pp. 197–215).
Springer.

Isaac, A. M., Szymanik, J., & Verbrugge, R. (2014). Logic and
complexity in cognitive science. In Johan van Benthem on logic
and information dynamics (pp. 787–824). Springer.

Johnson-Laird, P. N. (1983). Mental models. Harvard Univ Press.
Johnson-Laird, P. N., & Bara, B. G. (1984). Syllogistic inference.

Cognition, 16(1), 1–61.
Johnson-Laird, P. N., & Byrne, R. M. (1989). Only reasoning. Jour-

nal of Memory and Language, 28(3), 313–330.
Johnson-Laird, P. N., Byrne, R. M., & Tabossi, P. (1989). Reason-

ing by model: The case of multiple quantification. Psychological
Review, 96(4), 658–673.

Jones, S. L. P. (2003). Haskell 98 language and libraries: the revised
report. Cambridge University Press.

Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllo-
gism: A meta-analysis. Psychological Bulletin, 138(3), 427-457.

Khemlani, S., & Johnson-Laird, P. N. (2013). The processes of
inference. Argument & Computation, 4(1), 4–20.

Koralus, P., & Mascarenhas, S. (2013). The erotetic theory of rea-
soning: Bridges between formal semantics and the psychology of
deductive inference. Philosophical Perspectives, 27(1), 312–365.

Marlow, S. (2010). Haskell 2010 language report. Retrieved from
http://www.haskell.org/onlinereport/haskell2010

McClelland, J. L. (2009). The place of modeling in cognitive sci-
ence. Topics in Cognitive Science, 1(1), 11–38.

Mental Models & Reasoning Lab. (n.d.). Syllogistic reasoning code
[computer program]. Retrieved from http://mentalmodels
.princeton.edu/programs/Syllog-Public.lisp

Mitchell, J. C. (2003). Concepts in programming languages. Cam-
bridge University Press.

Moss, L. S. (2008). Completeness theorems for syllogistic frag-
ments. Logics for linguistic structures, 29, 143–173.

Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and
cognitive science. MIT Press.

Sugimoto, Y., Sato, Y., & Nakayama, S. (2013). Towards a formal-
ization of mental model reasoning for syllogistic fragments. In
Proceedings of the 1st International Workshop on Artificial Intel-
ligence and Cognition, CEUR Vol.1100, 140–145.

Van Eijck, J., & Unger, C. (2010). Computational semantics with
functional programming. Cambridge University Press.

Verbrugge, R. (2009). Logic and social cognition. Journal of Philo-
sophical Logic, 38(6), 649–680.

Vytiniotis, D., Peyton Jones, S., Claessen, K., & Rosén, D. (2013).
Halo: Haskell to logic through denotational semantics. ACM SIG-
PLAN Notices, 48(1), 431–442.

36

