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Abstract

The performance of cognitive models often depends on the set-
tings of specific model parameters, such as the rate of memory
decay or the speed of motor responses. The systematic explo-
ration of a model’s parameter space can yield relevant insights
into model behavior and can also be used to improve the fit
of a model to human data. However, exhaustive parameter
space searches quickly run into a combinatorial explosion as
the number of parameters investigated increases. Taking an
established instance-based learning task as example, we show
how simulation using parallel computing and derivative-free
optimization methods can be applied to investigate the effects
of different parameter settings. We find that both global opti-
mization methods involving genetic algorithms as well as local
methods yield satisfactory results in this case. Furthermore, we
show how a model implemented in a specific cognitive archi-
tecture (ACT-R) can be mathematically reformulated to pre-
pare the application of derivative-based optimization methods
which promise further efficiency gains for quantitative analy-
sis.

Keywords: cognitive modeling; ACT-R; instance-based learn-
ing; discrete-time systems; derivative-free optimization; pa-
rameter identification

Introduction
Most formal models of cognitive processes contain adjustable
parameters which moderate model behavior. Exploring the
effects of different parameter settings in a cognitive model is
important to fully understand its behavior, to identify param-
eter combinations providing the best fit to human data, and to
analyze sensitivity towards parameter variations (see Roberts
& Pashler, 2000). In practice, this exploration is still often
conducted manually, guided by researcher intuition or some-
times just by trial-and-error. The systematic exploration of
a given parameter space is often desirable, but quickly runs
into difficulties, as processing time increases exponentially
with the number of parameters and the resolution of anal-
ysis (the curse of dimensionality). Compounding the prob-
lem, the computational performance of cognitive models is
often comparatively poor as cognitive plausibility usually has
priority over computational performance. The development
of more efficient methods for parameter space exploration
has therefore become an emergent topic in cognitive mod-
eling research (e.g., Best et al., 2009; Gluck, Scheutz, Gun-
zelmann, Harris, & Kershner, 2007; Lane & Gobet, 2013;
Moore, 2011). Complementing existing approaches, we will

illustrate how optimization-methods from the field of scien-
tific computing can be applied to parameter search problems.
As example we use a model of an implicit learning task,
originally implemented in the ACT-R cognitive architecture
(Taatgen & Wallach, 2002).
While parallel high-performance computing can improve the
speed of parameter space searches, the combinatorial explo-
sion inherent in this task easily exceeds the capacity even
of large computing resources (Gluck et al., 2007). An-
other possibility is to optimize the efficiency of search al-
gorithms. In the current literature, two approaches of this
kind can be found. One is to sample the search space se-
lectively, e.g., by Adaptive Mesh Refinement or Regression
Trees (Best et al., 2009; Moore, 2011). Areas of the search
space with high-information content (e.g., containing discon-
tinuities or non-linear gradients) are sampled more densely,
areas with low-information content only sparsely. This strat-
egy allows to preserve most information relevant for model-
ing purposes while reducing the amount of sampling required.
However, instead of approximating the full parameter space,
it its sometimes sufficient to find particular points or areas
with certain characteristics, e.g., parameter combinations pro-
viding the best model fit to empirical data. To reach this
goal, derivative-free optimization methods such as genetic
algorithms have been employed, which use an evolutionary
generate-and-select-strategy to find optimal parameter com-
binations (e.g., Kase, Ritter, & Schoelles, 2008; Lane & Go-
bet, 2013). Here, we will illustrate how a cognitive model
implemented in a specific cognitive architecture (ACT-R) can
be mathematically reformulated towards applying a third gen-
eral approach, derivative-based optimization, which promises
further efficiency gains and additional analytic insights com-
pared to derivative-free optimization.

The Sugar Factory Paradigm
The task used to illustrate this approach is the Sugar Fac-
tory, a computer-simulated scenario developed by Berry and
Broadbent (1984) in order to study how people interact with
dynamic systems. In behavorial studies participants are often
able to control the Sugar Factory system above chance level
yet can not verbalize how the system works (Berry & Broad-
bent, 1984, 1988). This can be explained by assuming that
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participants learn to associate particular states of the simula-
tion with specific actions (instance-based learning) instead of
inducing generalized rules about system behavior (Dienes &
Fahey, 1995; Taatgen & Wallach, 2002). The Sugar Factory
has repeatedly been used in experimental research and the
underlying principles of instance-based learning have been
shown to apply to more complex situations, ranging from
playing backgammon (Sanner, Anderson, Lebiere, & Lovett,
2000) to economic decision making (Gonzalez & Lebiere,
2005) or air-traffic control (Lebiere, Anderson, & Bothell,
2001).

In the Sugar Factory, participants are asked to reach a spe-
cific sugar production p∗ by choosing the number of workers
x in each round j ∈ [1,N]. The equation below describes the
behavior of the Sugar Factory:

p j+1 = 2 · x j− p j +ur, (1a)

ur ∈
{
−1,0,1

}
, (1b)

p ∈
{

1, ...,12
}
, (1c)

x ∈
{

1, ...,12
}
, (1d)

where ur is a random component. If the resulting produc-
tion is less than 1 or greater than 12, then p is set to 1 or 12
respectively. The goal is to produce 9000 tons of sugar which
corresponds to p= 9 on each of a number of trials. The initial
production value is p1 = 6 and the task is run for 40 rounds.
Participants are not informed about the system structure. A
sugar output of p ∈ [8,10] is scored as being on target, mak-
ing it possible to be on target 100 % of the time, despite the
random component.

ACT-R Model of the Sugar Factory
Instanced-based learning can be modeled using the declara-
tive memory module of the ACT-R architecture (Anderson
et al., 2004). We used an adapted version of the Taatgen
and Wallach (2002) model of the Sugar Factory, in which
instances are represented as memory chunks encoding task
state, participant action, and outcome (i.e., current produc-
tion p j, number of workers x j, and new production p j+1).

Each chunk i has an activation value Ai which is computed
from three components: the base-level activation Bi, a context
component Ci and a noise component un,i j ,

Ai := Bi +Ci +un,i j. (2)

To retrieve a chunk from memory a retrieval request is made
to the declarative module. Only chunks with an activation
level above threshold τ are eligible for retrieval.

The base-level activation Bi is calculated from the number
ni of presentations of a chunk i, its the time since its creation
Li and the decay parameter d1,

Bi := ln
(

ni

1−d

)
−d · ln(Li) . (3)

1Note that we used the ACT-R optimized learning equation.

In this model the context component Ci is determined by the
similarity between the numerical values for workers and pro-
ductions in the retrieval request and corresponding values of
the chunks in declarative memory:

Ci := P ·∑
k

Mik, (4)

with Mik as similarity values 2. The parameter P reflects the
amount of weighting given to the similarities.

As the Sugar Factory model is very simple, only few pro-
duction rules are necessary. The steps our model runs through
are described below.

1. Start with a number of workers x =
{

7,8,9
}

.

2. Request to retrieve a chunk from memory which matches
the current task state and results in a production of p = 9.

3. (a) If there is such a chunk and the activation of this chunk
is above the threshold τ: perform the action stored in
the retrieved chunk, i.e., change the workforce.

(b) If no chunk reaches the activation threshold τ, perform
a random action. If the sugar production is below or
above target, then

{
− 2, ...,2

}
is added to the current

workforce. If the sugar production is on target, then{
−1,0,1

}
is added to the current workforce.

4. Create or update a chunk with the information from this
round.

The model actions described in rule 1 and rule 3 (b) are
based on empirical observations reported in Dienes and Fahey
(1995).

Mathematical Reformulation
We start by rewriting the logical relations in the ACT-R model
as a recurrence relations system, which is then reformulated
using only numerical formulas.

Let Nr be the number of rounds. The general outline of the
cognitive process is as follows.

In every round

1. compute the activations of chunks,
2. select the chunk with the highest activation,
3. retrieve information stored in this chunk,
4. perform action,
5. update memory.

2The formula for the similarities of numbers was taken from the
ACT-R 6.0 Tutorial (2012):

Mik :=− |a−b|
max(a,b)

,
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For the Sugar Factory each chunk represents an instance
with i three slots: current production p j, action (i.e., number
of workers x j), and the new production p j+1. The maximum
total number Nc of chunks present in the model can be cal-
culated from the number of values possible for its slots cik,
k ∈
{

1,2,3
}

, slot k of chunk i. Feasible values for new work-
force (ci1), the current production (ci2) and the new produc-
tion (ci3) are {1, . . . ,12} each. Thus,

Nc = 12 ·12 ·12 = 1728. (6)

We allocate every possible chunk and set its initial activity to
−M where M is sufficiently large.

The lifetime of a chunk consists of the round of its genera-
tion ti, the current round j and a time constant T = 0.05s.

The model contains different types of variables:

• states including the activation of the chunks and process
specific states as the current number of workers and the
current production,

• parameters τ, d, P and s describing the cognitive proper-
ties of the individual participant (the default values in this
model are: τ = 0, d = 0.5, P = 10 and s = 0.2)

• inputs, containing the cognitive noise un, random decisions
by the participants uw + uon resp. uw + uoff and system in-
puts ur. The sequences of random values are generated a
priori as reproducible pseudo-random numbers.

Feasible values for the inputs are: uon, ∈
{
− 1,0,1

}Nr

if the production is on target and uoff, ∈
{

7,8,9
}
×
{
−

2, ...,2
}(Nr−1) if the production is off target as well as ur,

∈
{
− 1,0,1

}Nr for the random vector. All inputs are vec-
tors of length Nr, except un,i j, which is of length Nr ·Nc. If
the target has been reached in round j, i.e. the new produc-
tion p j+1 equals 8, 9, or 10, an indicator R j+1 is set to 1. The
overall score is computed by summation of R j+1.

This modeling approach leads to a nonlinear recurrence re-
lation system, see Algorithm 1.

In our approach, the logical phrases from the ACT-R for-
malism are modeled by argmax, |.|, max and if-then state-
ments. We formulate them using the Heaviside and Delta
functions and write the if-then statements

x =
{

a, if s≥ 0
b, if s < 0 , x =

{
c, if t = 0
d, if t 6= 0

as

x = H(s) ·a+(1−H(s)) ·b, x = δ(t) · c+(1−δ(t)) ·d.

So we substitute max(x,y) and |x−y|
max(x,y) . To calculate

i∗ = argmaxAi, x j =

{
ci∗1, Ai∗ ≥ τ

uw, j, Ai∗ < τ
,

for j = 1, . . . ,Nr do
(1) for i = 1, . . . ,Nc do

Li := ( j− ti)+T ;
Bi := ln(ni/(1−d))−d · ln(Li) ;

Mi1 :=−
∣∣p j− ci2

∣∣/max
(

p j,ci2
)
;

Mi2 :=−|9− ci3|/max(9,ci3);
Ai := Bi +P · (Mi1 +Mi2)+ un,i j;

end
(2) i∗ := argmaxiAi;

(3) Ai∗ ≥ τ?
(i) Ai∗ ≥ τ: x j := ci∗1;

(ii) Ai∗ < τ: x j := uw, j;

(4) p j+1 := 2 · x j− p j +ur, j;
(i) p j+1 > 12: p j+1 = 12;

(ii) p j+1 < 1: p j+1 = 1;
(iii) p j+1 = 9?

(a) p j+1 = 9: uw, j+1 := uw, j +uon, j;
(b) p j+1 6= 9: uw, j+1 := uw, j +uoff, j;

(5) uw, j+1 > 12: uw, j+1 = 12;

(6) uw, j+1 < 1: uw, j+1 = 1;

(7) p j+1 ∈
{

8, ...,10
}

?

(i) p j+1 ∈
{

8, ...,10
}

: R j+1 := 1;
(ii) p j+1 /∈

{
8, ...,10

}
: R j+1 := 0;

(8) ∃ i = 1, . . . ,Nc : ci =
(
x j, p j, p j+1

)
?

(i) ∃ i : ni := ni +1
(ii) @ i : Nc := Nc +1;

cNc :=
(
x j, p j, p j+1

)
;

nNc := 1;
tNc := j;end

Algorithm 1: ACT-R algorithm of Sugar Factory

we firstly compute A∗ = maxi Ai and then

x j =
Nc

∑
i=1

H(Ai−A∗) · (H(A∗− τ) · ci∗1 +(1− (A∗− τ)) ·uw, j).

In order to compute sensitivities and use derivative-based op-
timization algorithms at a later stage, we aim for a continuous
model formulation. We replace Heaviside and Delta func-
tions by continuous approximate redefinitions

H(x) :=
1
π

arctan
(
h · x
)
+

1
2
, δ(x) := exp

(
− x2

a2

)
,

with h = 1000, a = 0.01.
The limits on the production in the Sugar Factory are im-

plemented by if-then statements. Those rules appear as fol-
lows in our mathematical description:

p j+1 > 12 : p j+1 = 12,
p j+1 < 1 : p j+1 = 1.

In our reformulation those if-then statements are smoothened
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using the Heaviside function H():

p̃ j+1 =2 · x j+1− p j +ur j

p j+1 =H(p̃ j+1−12) ·12+
(
1−H(p̃ j+1−12)

)
·
(

H(1− p̃ j+1) ·1+
(
1−H(1− p̃ j+1)

)
· p̃ j+1

)
.

Simulation
We implemented the reformulation of the model in the Python
programming language. Simulations were run on a 48-core
high-performance server (4 · 12-core AMD Opteron 6176,
non-dedicated) with 256 GB RAM. The maximum runtime
per simulation run did not exceed one day. We focused on pa-
rameters P and τ, as they have considerable effect on model
performance yet no strong empirically based recommenda-
tions for default values exist. All other parameters where left
at the recommended default values.

For each grid point the simulation was run 100 times with
different input vectors, see Figure 1. The activation noise
un,i j was set to zero, as it does not lead to a notable change in
mean performance. In a second step, only instances in which
a chunk was retrieved were counted as being on target and
compared to our previous results (see Figure 1 (b)). Figure 2
shows the sensitivity of results with regard to different initial
production values.

In general, all simulation results show a similar pattern in
response to parameter variation. Figure 1 (a) shows a char-
acteristic interaction of parameters τ and P, with the high-
est performing parameter combinations located in a wedge-
shaped area at the center of the plot and lower performance in
both lower left and upper right corners. Considering whether
model responses where based on memory retrieval as op-
posed to random behavior (see 1 (b)) shows that learning oc-
curs in the lower left corner. In contrast, in the upper right
corner behavior is almost exclusively driven by random be-
havior.

Furthermore, Figure 2 shows that the initial starting val-
ues of the Sugar Factory problem have a notable influence on
overall performance, but do not interact in an unpredictable
way with parameter settings. The pattern is cognitively plau-
sible, as starting values closer to the actual best control values
make system control easier.

Optimization
In order to determine the parameter combination with the
highest performance and the best model fit, we applied a num-
ber of derivative-free optimization algorithms: Nelder-Mead
Simplex (Nelder & Mead, 1965) with explicit support for
bound constraints (Box, 1965) and BOBYQA (Powell, 2009)
which are both local derivative-free optimization solvers.
BOBYQA uses an iteratively constructed quadratic approxi-
mation for the objective function. Additionally, we applied
ESCH, a modified genetic algorithm (Beyer & Schwefel,
2002) and Controlled Random Search (CRS) with local mu-
tation (Kaelo & Ali, 2006). ESCH and CRS are both heuris-

tic global solvers. CRS starts with a population of random
points, and evolves these heuristically, a method comparable
to genetic algorithms. All optimization algorithms were ap-
plied using the Python interface of NLopt (Johnson, 2014).
The stopping criterion for the local solvers was a relative tol-
erance on the optimization parameters of 0.1. For the heuris-
tic global solvers the stopping criterion was set to a maximum
runtime of 960s.

The objective function for the highest performance was a
weighted sum consisting of the mean of the results on target
and the standard deviation,

a · 1
n

n

∑
i=1

Ri +b ·

√√√√ 1
n−1

n

∑
i=1

(
Ri− 1

n

n

∑
i=1

Ri

)2

,

where Ri = ∑ j Ri
j+1. Ri

j+1 is the indicator on target in round
j = 1, . . . ,Nr for input i = 1, . . . ,n, n = 100.

Table 1 shows the results for a = 1 and b = 0 and 100 in-
puts using multiple start values (see Figure 1 (a)). The lo-
cal solvers Nelder-Mead and BOBYQA both found the same
local maximum (τ = −4, P = 27 with objective = 20.15),
for ESCH and CRS we successively increased the time limit
from 120 to 960 seconds. Table 1 shows the maxima found
by the heuristic global solvers after 960 seconds. For a = 1
and b = −1, all solvers found the same point as a maxi-
mum (τ≈−6.5, P≈ 30 with objective≈ 13.87), except CRS
which found a slightly better point (τ≈−8.15, P≈ 34.9 with
objective ≈ 14.04).

For optimizing the model fit, the objective function was
the root mean square deviation (RMSD) of the model perfor-
mance and a human reference value Rref = 7.9 taken from the
literature (Dienes & Fahey, 1995),√

1
n

n

∑
i=1

(Ri−Rref)
2.

Table 2 shows the results for the different solvers again using
multiple start values. All solvers found the same point as a
maximum (τ≈ 0.5, P≈ 30 with objective = 4.05). The time
limit for ESCH and CRS was set to 5 seconds.

Table 1: Solver comparison, highest performance

Solver τ P Maximum #Evaluations
Nelder-Mead -4 27 20.15 36
BOBYQA -4 27 20.15 43
ESCH -3.13 22.36 20.13 863
CRS -4.21 28.52 20.2 860

The parameter combinations that provide the best fit to av-
erage human performance are located at about τ = 0.5 and
P ≈ 30, as indicated by Figure 1 (a) and the results of op-
timization routines. Interestingly, this combination is far re-
moved from the possible optimal performance, located at pa-
rameter values τ=−4.21 and P= 28.52. Apparently, consid-
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Figure 1: Rounds on target for 100 inputs over 40 rounds, initial production p0 = 6, medium grid (8256 grid points)
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(a) Initial production p0 = 1
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(b) Initial production p0 = 6 (standard)
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(c) Initial production p0 = 9

Figure 2: Rounds on target for 100 inputs over 40 rounds with different initial production values, medium grid (8256 grid
points)

Table 2: Solver comparison, best model fit

Solver τ P Maximum #Evaluations
Nelder-Mead 0.5 28.13 4.05 67
BOBYQA 0.5 27.80 4.05 54
ESCH 0.45 27.88 4.05 6374
CRS 0.48 32.94 4.05 4500

ering even weak memories of previous instances (i.e., a low
retrieval threshold τ) is an advantage in this task.

Conclusions
In this work we derive a mathematical formalization of an
ACT-R cognitive model to enhance its numerical tractability.
The formulation contains both specific parts describing the
instances and rules of a particular task and generic parts mod-
eling the declarative memory module of the ACT-R frame-
work. This enables us to apply the approach to a broader
range of scenarios. Our formulation transfers the logic-based
ACT-R rules to a recurrence relation, which after smooth-
ing represents a differentiable mapping from model param-
eters and model inputs to the model outputs. In this work

we used this formulation for a simulation-based study of the
Sugar Factory paradigm where we explored the parameter
space by parallel computing and computed optima by search-
methods and derivative-free approaches. Our next step will be
the evaluation of the derivatives of the recurrence relation by
using techniques of algorithmic differentiation (Griewank &
Walther, 2008) and to apply them in derivative based numer-
ical approaches for sensitivity analysis, parameter estimation
and optimum experimental design for efficient model calibra-
tion (Körkel, Kostina, Bock, & Schlöder, 2004). Using these
methods promises a considerable reduction of computational
costs for the quantitative analysis of suitable cognitive pro-
cess models.
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