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Abstract

Our  ongoing  investigations  into  biologically  plausible
syntactic  and  semantic  parsing  have  identified  a  novel
methodology for processing complex structured information.
This  approach  combines  Vector  Symbolic  Architectures  (a
method  for  representing  sentence  structures  as  distributed
vectors),  the Neural Engineering Framework (a method for
organizing  biologically  realistic  neurons  to  approximate
algorithms),  and  constraint-based  parsing  (a  method  for
creating dynamic systems that converge to correct parsings).
Here, we present some of our initial findings that show the
promise of this approach for explaining the complex, flexible,
and scalable parsing abilities found in humans.

Keywords: Neural  engineering  framework;  parsing;  localist
representation;  distributed  representation;  vector  symbolic
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Parsing with Traditional Localist Networks

Neural networks have often been explored as mechanisms

for  parsing  language.   In  many of  these  approaches  (e.g.

Cottrell,  1985),  a single connectionist  node is created not

only  for  each  term  in  the  language,  but  also  for  each

possible  usage  of  that  term,  leading  to  a  combinatorial

explosion of nodes (Figure 1).  While these sorts of models

provide  accurate  parsing  and  show  some  performance

characteristics  similar  to  humans  (e.g.  Waltz  &  Pollack,

1985),  this exponential  growth of components means that

they would require more nodes than there are neurons in the

human brain.   This makes it difficult  to see how such an

algorithm could be instantiated within the brain.

Figure 1: An example of a localist parsing network.  A node

exists for each possible combination of terms, leading to an

exponential growth in resources required.  The nodes for

S(DOG,CHASE,CAT) and the three other possible

sentences are omitted for clarity.

Figure 2: Activity level of each node in Figure 1 as the network is presented with the input DOG for the first 0.5s, CHASE

for the next 0.5s, and then CAT for the next 0.5s.  The result is the activation of NP(DOG) and VP(CHASE, CAT).  The

network can also successfully parse “DOG CHASE DOG”, “CAT CHASE DOG”, and “CAT CHASE CAT”.
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The network in Figure 1 is capable of parsing sentences

from the following toy grammar:

S → NP, VP

NP → N VP → V N

N → DOG or CAT V → CHASE

Excitatory and inhibitory connections increase and decrease

(respectively) the activity in the target node proportional to

the  activity  in  the  source  node.   The  multiplicative

excitation connection increases activity based on the product

of the activities in the two source nodes.  The four nodes for

the  four  possible  sentences  (S(DOG,  CHASE,  CAT),

S(DOG, CHASE, DOG), and so on) are not shown, but are

implemented similarly to the VP nodes, with connections to

the corresponding NP and VP nodes.

Distributed Representation

As an alternative to localist representation, other approaches

make use  of  a  distributed  representation.   The idea  is  to

represent content not as the activity of a single node, but

rather each node has an equivalent set of numbers (a vector).

For  example,  instead  of  a  single  node  being  active  to

represent DOG, this might be represented as the vector [0.1,

-0.4, 0.7, 0.3, 0.2].  CAT would be another vector, and the

presence of both terms would be represented as the sum of

those vectors.   The particular  vectors  used for  each  term

might  be  chosen  via  some learning  process  that  imposes

similarity between vectors, such as DOG being more similar

to CAT than it is to CAR.  However, for the purposes of this

paper we follow the standard process of randomly choosing

these vectors.

With  this  approach,  it  is  possible  to  re-describe  any

traditional  localist  model  in  a  distributed  manner.   For

example, we can take the nodes in Figure 1 and replace each

one with a vector.  To get the overall state of the system, we

add  together  the  vectors  for  each  node,  weighted  by  the

activity level of that node.

To  implement  the  connections,  instead  of  using  the

activity of the source node, we must compute the similarity

between the overall state vector and the ideal state vector for

the source of the connection.  Here, we use the dot product

operation  to  compute  similarity.   So  to  implement  an

excitatory connection A → B, we take the state vector x and

compute  (x∙A)B.  The  result  is  a  vector  indicating  how

much  x  should  be  changed.   This  can  also  be  written

mathematically as:

dx/dt=BATx

Importantly, the number of dimensions in the distributed

representation's vector can be much less than the number of

nodes in the localist representation, at the cost of a slight

decrease in accuracy as the vectors slightly interfere with

each  other.  This  will  work best  when only a few of the

nodes are active at any given time (i.e. when the distributed

vector  is  formed by the combination of a few basic term

vectors).   Plate (2003) shows that with vectors with 1000

dimensions one can represent states with 8 nodes active out

of a total of 50,000,000,000,000 nodes with 95% accuracy.

The distributed representation thus avoids the problem of

exponential growth.

Furthermore,  Plate's  approach  and  other  similar  Vector

Symbolic Architectures (Gayler, 2003) supply a method for

combining two vectors to generate a new vector.  That is,

instead of randomly generating a vector for N(DOG), it can

be computed based on the vector for DOG and the vector

for  NOUN.   For  this,  we  follow  Plate  and  use  the

mathematical  operation of circular  convolution (⊛).  That

is, we set N(DOG) = NOUN⊛DOG.

Figure 3: A distributed version of parsing.  The state of the system is a single vector x. The lines are the dot product of x with

the vectors for each node.  The network behaves similarly to Figure 2 without requiring an exponential growth in node count.
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Biological Recurrence

In the localist representation, the actual parsing process is

done by changing the activity level of each node based on

its  connections  and  the  activity  levels  of  the  nodes  that

connect  into  it.   This  can  be  thought  of  as  a  differential

equation  dx/dt=f(x),  where  x is  overall  state  vector  (the

activity  level  of  each  node)  and  f is  a  function  that

implements the effects of the connections.

This same idea is true for the distributed approach as well.

We take each connection and replace it with a function.  As

discussed  above,  the  connection  causing  the  DOG node's

activity to increase the activity of the N(DOG) node would

be expressed as dx/dt = (x∙DOG)(NOUN⊛DOG).  That is,

we compute the similarity (dot product) of the current state

x with DOG and multiply the result by NOUN⊛DOG.  The

result  is  the change in  x caused by this connection.   The

change caused by all of these connections can be found by

generating  a  single  function  that  is  the  sum  of  each

connection's function.

Now that we have expressed the parser as a differential

equation,  we can  go  one step  farther  and  determine how

biologically realistic neurons could implement that equation.

That is, rather than dealing with the idealized connectionist

nodes  or  simply  computing  the  math  of  the  distributed

approach, we can create a model where each component is a

spiking  neuron,  and  the  differential  equation  is

approximated by the synaptic connections between neurons.

To do  this,  we use  the Neural  Engineering  Framework

(NEF;  Eliasmith  &  Anderson,  2003).   This  provides  a

method  whereby  the  activity  in  a  group  of  neurons

represents a vector, connections between groups of neurons

implement  functions  on  those  vectors,  and  recurrent

connections  implement  differential  equations  on  those

vectors.   In  each  case,  the  neurons  only  approximate the

desired  function.   Given  a  enough  neurons,  this

approximation  can  be  made  arbitrarily  close  to  the  ideal

function.  However, given realistic biological constraints the

resulting behaviour will not be identical to the mathematic

version.   This provides a natural  competence/performance

distinction.

To implement this parsing model using the NEF, we use a

population  of  4,000  LIF  neurons.   The  activity  of  these

neurons  will  represent  a  128-dimensional  vector.   The

neurons  have  randomly  chosen  biologically  realistic

properties in terms of their background current, sensitivity

to  input,  and  their  “preferred”  input  stimulus  (much  like

how neurons in visual cortex have particular visual stimuli

to  which  they  respond  most  strongly).   This  forms  a

distributed representation of our distributed vector.

Next, we transform the desired differential equation into a

form that takes into account intrinsic neuron properties such

as  the  post-synaptic time constant  (the amount  of  time it

takes  neurotransmitters  to  be  reabsorbed).   For  common

recurrent connections in cortex, this is ~0.1s.  The NEF can

then be used to solve for an all-to-all recurrent connection

weight matrix between all 4,000 neurons that will optimally

approximate  the  given  differential  equation  (Eliasmith  &

Anderson, 2003).

Importantly,  this  allows  standard  linear  connection

weights to approximate nonlinear functions.  In this case, to

implement  multiplicative  excitatory  connections,  we need

dx/dt = (x∙V(CHASE))(x∙N(CAT))(VP(CHASE,CAT)) and

other  similar  functions.   These  functions  will  be  less

accurately  implemented  than  the  ones  for  simple  linear

Figure 4:  Parsing “DOGS CHASE CATS” in a network of 4000 leaky integrate-and-fire neurons, using distributed vectors of

128 dimensions.  The input is the vector for DOG, then CHASE, and then CAT, for 0.5 seconds each. The graph shows the

similarity of the represented vector x to the vectors for each indicated term.  The network successfully parses the sentence.
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connections.  However, the ability to approximate this sort

of complex connection allows for a wide range of new types

of constraint models that we are only beginning to explore.

Semantic Pointer Architecture

It  should  be  noted  that  the  recurrent  parsing  networks

described here use the same approach to representation as in

our previous work with building neuron models to perform

inductive  reasoning,  remember  sequences,  and  exhibit

cognitive control.  This capability formed the core of Spaun

(Eliasmith et al., 2012), the first large-scale brain simulation

capable of performing multiple tasks.  We call this general

approach  the  Semantic  Pointer  Architecture  (Eliasmith,

2013).   The  vectors  are  thought  of  as  Semantic  Pointers

because they not only form a compressed representation of

multiple  pieces  of  information  (so  that  the  original

information can be accessed by only having the compressed

vector, much like a pointer in computer science),  but also

the vector itself contains similarity information, making it

useful for making semantic decisions (so the vector value is

not arbitrary, as in a computer science pointer).

In previous work, we have used a model of the cortex-

basal  ganglia-thalamus  loop  to  control  changes  to  these

semantic  pointers  (vectors).   In  (Stewart,  Choo,  &

Eliasmith, 2014), we showed that a left-corner parser could

be  implemented  with  this  loop.   However,  the  approach

taken in this paper is to implement language processing with

a  dedicated  recurrent  network,  rather  than  relying  on  the

general-purpose (and less neurally efficient) basal ganglia.

It  is  possible  that  this  sort  of  system  is  involved  in  the

dedicated language-oriented parts of the human brain.

Constraint Satisfaction in Recurrent Networks

Instead of implementing traditional rewrite rule grammars,

as  above,  another  way  to  think  about  parsing  is  that

grammatical  knowledge  can  be  represented  by  a  set  of

interacting  constraints  that  favor  and  penalize  the  co-

occurrence of certain structural features in the representation

of a linguistic expression (Smolensky & Legendre,  2006).

This  approach  can also be directly  mapped into recurrent

biologically plausible networks via the NEF. 

To achieve this, we note that a constraint can be thought

of  as  a  bidirectional  connection  of  the  form  seen  in  the

distributed  parsing  model.   That  is,  we  can  encode  each

constraint  as  a  weighted  outer  product  of  two  vectors

(Smolensky  et  al.,  2013).  Then,  we  construct  a

transformation  matrix  that  is  sum  of  the  outer  products

corresponding  to  entire  collection  of  constraints  under

consideration.  If,  for  example,  there  was  just  a  positive

constraint  between two representations A and B, then the

function the neural network needs to approximate would be:

For  more  constraints,  more  outer  products  would  be

summed  together.   Each  of  these  outer  products  can  be

thought of as a projection matrix that  maps an input to a

scaled version of a vector used to define the outer product.

For instance, BAT maps to B scaled by the dot product of

the  input  x  and  AT,  by  virtue  of  the  linearity  of  matrix

multiplication and the fact that the column-space of BAT is

all scalar multiples of B.

To build a biologically plausible implementation of this

constraint satisfaction network, we use the NEF (Eliasmith

&  Anderson,  2003)  in  the  same  way  as  the  previous

example.  4000 neurons are configured to represent a 128

dimensional vector, and the NEF is used to find the optimal

set of recurrent synaptic connection weights on all of those

neurons that will best approximate this function.

The  result  of  defining  this  mapping  between  the  soft

constraints  and  synaptic  weights  is  that  each  pattern  of

neural  activity in the population can be assigned a single

scalar  value  (i.e.  the  value  of  a  harmony  function;

Smolensky and Legendre, 2006) that reflects the degree to

which the constraints in question are being satisfied. Over

time, the state of the system will gravitate towards a position

that maximizes this value and thereby involves a minimal

degree  of  constraint  violation.  In  the  case  that  the

constraints correspond to grammatical knowledge, one can

think of this trajectory through the model's state space as a

parallelized execution of the rules defining the grammar. 

To  test  the  scalability  of  this  approach  to  performing

constraint  optimization  in  neural  systems,  we  generate  a

vocabulary of 200 representations and generate random all-

to-all  constraints  between them, yielding a transformation

matrix  encoding  a  total  of  40,000  constraints.  We  then

generate  a  neural  population  that  computes  the  function

described by the transformation matrix through its recurrent

connections.  Figure  5  depicts  the  similarity  between  the

representational state encoded by this population and each

of  the  200  representations  over  time,  as  a  fixed  set  of

vocabulary  items  are  presented  as  constant  input.  The

stability achieved after approximately 300ms indicates that

the system is able to rapidly compute a local solution to the

problem of optimizing all 40,000 constraints.

Figure 5: A recurrent network of 4000 neurons representing

a 128-dimensional vector solving a randomly generated

constraint satisfaction problem. The similarity of the

resulting vector with the 200 basic vectors is shown.  The

network settles to a final result after ~300ms.
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Completing Parse Trees

We can further use this approach to take partial parse trees

and  complete  them.   Given  a  set  of  rewrite  rules  for  a

grammar, we can identify grammatical constituents that can

and cannot occur together.  These form a set of constraints

on  the  final  vector  representation.   Traditionally,  these

constraints  can  be  seen  as  connections  between  localist

nodes.   However,  as  noted  in  the  previous  section,  these

constraints  can  again  be  converted  into  differential

equations that act on the distributed state vector.

To demonstrate this, consider the following toy grammar:

S → NP, VP S → AUX, NP, VP

NP → DET, N VP → V

VP → V VP → V, NP

After building a network to implement these constraints,

we can present partial tree to the system and it will generate

the correct  consistent components for the parse tree.   For

example,  Figure 6 shows what happens when the input is

the  partial  tree  S(?,NP(DET,?),VP(?,V,?)).   The  network

successfully identifies the missing components, resulting in

S(AUX,NP(DET,N),VP(V)) as the final parse.

Stability Analysis of a Parser as a Dynamical

System

Given that we use a recurrently connected neural ensemble

to perform constraint satisfaction, we can treat the ensemble

as a dynamical system and do a mathematical analysis of its

behaviour.  This  behaviour  is  governed  by  the  linear

transformation matrix, T, where the computed function is

We  can  factor  T  into  three  matrices  using  eigen-

decomposition: 

where S is an matrix whose columns are the eigenvectors of

T, and Λ is a diagonal matrix containing the eigenvalues of

T.   Because  the  eigenvectors  in  S  are  orthogonal  for

symmetric matrices  (and thus form a basis  for  the vector

space), we can rewrite the starting state of the system as a

linear combination of eigenvectors: 

where  vi is  the  ith eigenvector,  and  ci is  a  weight  on this

vector. This description of the initial condition of the system

allows us to solve for the state of the system at  arbitrary

times given that the transform matrix simply scales each of

its eigenvectors by a corresponding eigenvalue. If we treat

the  transform  as  a  matrix  differential  equation  (as  is

appropriate  in  the  case  that  the  constraint  satisfaction

process is implemented in neurons), we can then solve for

the state of the system in the following manner: 

As  time grows,  eigenvectors  with  negative  eigenvalues

will  disappear  from  xt,  while  those  eigenvectors  with

positive  eigenvalues  will  exponentially  increase;

eigenvectors  with  an  eigenvalue  of  zero  will  remain

unchanged  in  terms  of  the  contribution  they  make  to  xt.

Stable  states  are  therefore  acquired  only  when  the

transformation  matrix  has  non-positive  eigenvalues.

Nonetheless,  in the case that  the eigenvalues  are positive,

Figure 6: Completing a partial tree using grammar constraints encoded as recurrent connections in 4000 LIF neurons.  Each

possible grammar structure has its own vector, and the grammatical rules create positive and negative constraints.  The input

is the sum of the vectors for S(?,NP(DET,?),?) and S(?,VP(?,V,?)).  After ~0.1 seconds, the two vectors for S(AUX,?) and

S(?,NP(?,N),?) start to be represented, resulting in a stable parse of S(AUX,NP(DET,N),VP(V)).
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the  vector  describing  the  system  state  converges  on  a

particular  direction  in  the  vector  space  even  as  it  grows

without  bound.   Of  course,  when  implemented  using

neurons with the NEF, this growth in numerical value will

be balanced by the saturation behaviour that  occurs  when

neurons reach their maximum firing limit.

The  motivation  for  adopting  this  analysis  is  that  it

illustrates  how our system might be harnessed to perform

interesting computations with linguistic applications. In the

case of parsing, the goal is to set  the system to an initial

state  that  encodes  a  set  of  words,  and  then  have  the

dynamics of the system drive it towards a state that encodes

an optimal parse of these words. The key insight offered by

our  analysis  is  that  the  representations  over  which  our

constraints  are  defined  can  all  be  represented  as  linear

combinations of eigenvectors. 

As such, we can predict which initial conditions will get

mapped states that have particular degrees of similarity to

the states that define particular representations. We could in

theory choose eigenvalues that perform certain mappings of

interest, and then reconstruct a transformation matrix with

these eigenvalues. Overall, while more needs to be done to

determine how sophisticated grammatical constraints can be

encoded  and  processed  using  our  recurrent  network

architecture, stability analysis of this sort offers a promising

starting point. 

Conclusions and Future Directions

Traditionally, grammatical knowledge has been thought of

in terms of a set of fixed production rules that that are used

to generate the sentences of a language. More recently, this

knowledge has instead been characterized in terms of soft

constraints on the well-formedness of linguistic expressions

(Smolensky and Legendre, 2006). Our work suggests that it

is possible to develop this latter approach to the study of

grammatical  knowledge  in  the  context  of  detailed

simulations of neural systems. 

In  order  to  extend  our  work  to  accommodate  more

sophisticated  forms  of  language  processing,  a  few

outstanding  problems  need  to  be  solved.  First,  it  must

demonstrated  that  the  parsing  capabilities  of  our  simple

dynamical  systems can scale to more complex grammars.

Second,  a  better  understanding  of  the  dynamic  behavior

associated  with  particular  transformation  matrices  is

required.  For  example,  it  might  be  useful  to  learn  these

matrices  from examples  of  parse  trees  in  much the same

way that  supervised  learning  techniques  are  used to  train

standard  feed-forward  networks.  More generally, it  would

be very useful to be able to map desired properties of the

system’s behavior directly onto a set of constraints in a way

that  is  consistent  with  what  is  known  about  how  these

constraints are likely organized.

Limitations  aside,  there  are  number  of  promising

directions in which to extend this work. For example, many

researchers  are  currently  very  interested  in  developing

compositional  distributional  models  of  the  meanings  of

arbitrary  linguistic  expressions  (e.g.  Socher  et  al.,  2012).

One possible approach to developing such models involves

performing constraint optimization with recurrent networks

over semantic features in addition to the syntactic features

we  are  currently  examining.  Other  interesting  extensions

involve incorporating hierarchical structure into the neural

systems that perform constraint satisfaction, along with the

incorporation of multiplicative interactions that modify the

transformation  matrix  and  allow  the  behavior  of  the

recurrent network to be controlled by an external signal. 

Overall, such extensions can help provide insight into the

possible  ways  in  which  the  sophisticated  linguistic

capabilities that are the hallmark of human intelligence are

implemented in neural systems.

Acknowledgments

This  work  is  funded  thanks  to  the  Social  Sciences  and

Humanities Research Council of Canada and the U.S. Office

of Naval Research.

References

Cottrell,  G.W. (1985) Connectionist  parsing.   In  Proc.  7th

Annu. Conf. Cogn. Sci. Soc., Erlbaum, 201–211.

Eliasmith, C. & Anderson, C. (2003).  Neural Engineering.

Cambridge: MIT Press.

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf,

T.,  Tang,  Y.,  and  Rasmussen,  D.  (2012).  A large-scale

model of the functioning brain. Science, 338:1202-1205.

Eliasmith,  C.  (2013).  How  to  build  a  brain. Oxford

University Press, New York, NY.

Gayler,  R.  (2003).  Vector  Symbolic  Architectures  Answer

Jackendoff’s  Challenges  for  Cognitive  Neuroscience,  in

Slezak,  P.  (ed).  Int.  Conference  on  Cognitive  Science,

Sydney: University of New South Wales, 133–138. 

Plate, T. (2003). Holographic Reduced Representations, CSLI

Publications, Stanford, CA.

Smolensky, Goldrick, and Mathis (2013). Optimization and

quantization in gradient symbol systems: A framework for

integrating  the  continuous  and  the  discrete  in  cognition.

Cognitve Science, 38,6, 1102-1138.

Smolensky, P. and Legendre, G. (2006). The harmonic mind:

From neural computation to optimality-theoretic grammar.

Volumes 1-2. Cambridge MA: MIT Press. 

Socher, R., Huval, B., and Ng, A., and Manning, C. (2012).

Semantic compositionality through recursive matrix-vector

spaces.  Empirical  Methods  in  Natural  Language

Processing.

Stewart, T.C., Choo, X., and Eliasmith, C.. (2014). Sentence

processing in spiking neurons: a biologically plausible left-

corner parser. In 36th Annual Conference of the Cognitive

Science Society, 1533-1538.

Waltz, D. and Pollack, J. (1985).  Massively parallel parsing:

A  strongly  interactive  model  of  natural  language

interpretation.  Cognitive Science 9, 51–74.

12


