
Explorations in Distributed Recurrent Biological Parsing

Terrence C. Stewart (tcstewar@uwaterloo.ca)

Peter Blouw (pblouw@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience

University of Waterloo, Waterloo, ON, Canada N2L 3G1

Abstract

Our ongoing investigations into biologically plausible
syntactic and semantic parsing have identified a novel
methodology for processing complex structured information.
This approach combines Vector Symbolic Architectures (a
method for representing sentence structures as distributed
vectors), the Neural Engineering Framework (a method for
organizing biologically realistic neurons to approximate
algorithms), and constraint-based parsing (a method for
creating dynamic systems that converge to correct parsings).
Here, we present some of our initial findings that show the
promise of this approach for explaining the complex, flexible,
and scalable parsing abilities found in humans.

Keywords: Neural engineering framework; parsing; localist
representation; distributed representation; vector symbolic
architectures; holographic reduced representation

Parsing with Traditional Localist Networks

Neural networks have often been explored as mechanisms

for parsing language. In many of these approaches (e.g.

Cottrell, 1985), a single connectionist node is created not

only for each term in the language, but also for each

possible usage of that term, leading to a combinatorial

explosion of nodes (Figure 1). While these sorts of models

provide accurate parsing and show some performance

characteristics similar to humans (e.g. Waltz & Pollack,

1985), this exponential growth of components means that

they would require more nodes than there are neurons in the

human brain. This makes it difficult to see how such an

algorithm could be instantiated within the brain.

Figure 1: An example of a localist parsing network. A node

exists for each possible combination of terms, leading to an

exponential growth in resources required. The nodes for

S(DOG,CHASE,CAT) and the three other possible

sentences are omitted for clarity.

Figure 2: Activity level of each node in Figure 1 as the network is presented with the input DOG for the first 0.5s, CHASE

for the next 0.5s, and then CAT for the next 0.5s. The result is the activation of NP(DOG) and VP(CHASE, CAT). The

network can also successfully parse “DOG CHASE DOG”, “CAT CHASE DOG”, and “CAT CHASE CAT”.

7

The network in Figure 1 is capable of parsing sentences

from the following toy grammar:

S → NP, VP

NP → N VP → V N

N → DOG or CAT V → CHASE

Excitatory and inhibitory connections increase and decrease

(respectively) the activity in the target node proportional to

the activity in the source node. The multiplicative

excitation connection increases activity based on the product

of the activities in the two source nodes. The four nodes for

the four possible sentences (S(DOG, CHASE, CAT),

S(DOG, CHASE, DOG), and so on) are not shown, but are

implemented similarly to the VP nodes, with connections to

the corresponding NP and VP nodes.

Distributed Representation

As an alternative to localist representation, other approaches

make use of a distributed representation. The idea is to

represent content not as the activity of a single node, but

rather each node has an equivalent set of numbers (a vector).

For example, instead of a single node being active to

represent DOG, this might be represented as the vector [0.1,

-0.4, 0.7, 0.3, 0.2]. CAT would be another vector, and the

presence of both terms would be represented as the sum of

those vectors. The particular vectors used for each term

might be chosen via some learning process that imposes

similarity between vectors, such as DOG being more similar

to CAT than it is to CAR. However, for the purposes of this

paper we follow the standard process of randomly choosing

these vectors.

With this approach, it is possible to re-describe any

traditional localist model in a distributed manner. For

example, we can take the nodes in Figure 1 and replace each

one with a vector. To get the overall state of the system, we

add together the vectors for each node, weighted by the

activity level of that node.

To implement the connections, instead of using the

activity of the source node, we must compute the similarity

between the overall state vector and the ideal state vector for

the source of the connection. Here, we use the dot product

operation to compute similarity. So to implement an

excitatory connection A → B, we take the state vector x and

compute (x∙A)B. The result is a vector indicating how

much x should be changed. This can also be written

mathematically as:

dx/dt=BATx

Importantly, the number of dimensions in the distributed

representation's vector can be much less than the number of

nodes in the localist representation, at the cost of a slight

decrease in accuracy as the vectors slightly interfere with

each other. This will work best when only a few of the

nodes are active at any given time (i.e. when the distributed

vector is formed by the combination of a few basic term

vectors). Plate (2003) shows that with vectors with 1000

dimensions one can represent states with 8 nodes active out

of a total of 50,000,000,000,000 nodes with 95% accuracy.

The distributed representation thus avoids the problem of

exponential growth.

Furthermore, Plate's approach and other similar Vector

Symbolic Architectures (Gayler, 2003) supply a method for

combining two vectors to generate a new vector. That is,

instead of randomly generating a vector for N(DOG), it can

be computed based on the vector for DOG and the vector

for NOUN. For this, we follow Plate and use the

mathematical operation of circular convolution (⊛). That

is, we set N(DOG) = NOUN⊛DOG.

Figure 3: A distributed version of parsing. The state of the system is a single vector x. The lines are the dot product of x with

the vectors for each node. The network behaves similarly to Figure 2 without requiring an exponential growth in node count.

8

Biological Recurrence

In the localist representation, the actual parsing process is

done by changing the activity level of each node based on

its connections and the activity levels of the nodes that

connect into it. This can be thought of as a differential

equation dx/dt=f(x), where x is overall state vector (the

activity level of each node) and f is a function that

implements the effects of the connections.

This same idea is true for the distributed approach as well.

We take each connection and replace it with a function. As

discussed above, the connection causing the DOG node's

activity to increase the activity of the N(DOG) node would

be expressed as dx/dt = (x∙DOG)(NOUN⊛DOG). That is,

we compute the similarity (dot product) of the current state

x with DOG and multiply the result by NOUN⊛DOG. The

result is the change in x caused by this connection. The

change caused by all of these connections can be found by

generating a single function that is the sum of each

connection's function.

Now that we have expressed the parser as a differential

equation, we can go one step farther and determine how

biologically realistic neurons could implement that equation.

That is, rather than dealing with the idealized connectionist

nodes or simply computing the math of the distributed

approach, we can create a model where each component is a

spiking neuron, and the differential equation is

approximated by the synaptic connections between neurons.

To do this, we use the Neural Engineering Framework

(NEF; Eliasmith & Anderson, 2003). This provides a

method whereby the activity in a group of neurons

represents a vector, connections between groups of neurons

implement functions on those vectors, and recurrent

connections implement differential equations on those

vectors. In each case, the neurons only approximate the

desired function. Given a enough neurons, this

approximation can be made arbitrarily close to the ideal

function. However, given realistic biological constraints the

resulting behaviour will not be identical to the mathematic

version. This provides a natural competence/performance

distinction.

To implement this parsing model using the NEF, we use a

population of 4,000 LIF neurons. The activity of these

neurons will represent a 128-dimensional vector. The

neurons have randomly chosen biologically realistic

properties in terms of their background current, sensitivity

to input, and their “preferred” input stimulus (much like

how neurons in visual cortex have particular visual stimuli

to which they respond most strongly). This forms a

distributed representation of our distributed vector.

Next, we transform the desired differential equation into a

form that takes into account intrinsic neuron properties such

as the post-synaptic time constant (the amount of time it

takes neurotransmitters to be reabsorbed). For common

recurrent connections in cortex, this is ~0.1s. The NEF can

then be used to solve for an all-to-all recurrent connection

weight matrix between all 4,000 neurons that will optimally

approximate the given differential equation (Eliasmith &

Anderson, 2003).

Importantly, this allows standard linear connection

weights to approximate nonlinear functions. In this case, to

implement multiplicative excitatory connections, we need

dx/dt = (x∙V(CHASE))(x∙N(CAT))(VP(CHASE,CAT)) and

other similar functions. These functions will be less

accurately implemented than the ones for simple linear

Figure 4: Parsing “DOGS CHASE CATS” in a network of 4000 leaky integrate-and-fire neurons, using distributed vectors of

128 dimensions. The input is the vector for DOG, then CHASE, and then CAT, for 0.5 seconds each. The graph shows the

similarity of the represented vector x to the vectors for each indicated term. The network successfully parses the sentence.

9

connections. However, the ability to approximate this sort

of complex connection allows for a wide range of new types

of constraint models that we are only beginning to explore.

Semantic Pointer Architecture

It should be noted that the recurrent parsing networks

described here use the same approach to representation as in

our previous work with building neuron models to perform

inductive reasoning, remember sequences, and exhibit

cognitive control. This capability formed the core of Spaun

(Eliasmith et al., 2012), the first large-scale brain simulation

capable of performing multiple tasks. We call this general

approach the Semantic Pointer Architecture (Eliasmith,

2013). The vectors are thought of as Semantic Pointers

because they not only form a compressed representation of

multiple pieces of information (so that the original

information can be accessed by only having the compressed

vector, much like a pointer in computer science), but also

the vector itself contains similarity information, making it

useful for making semantic decisions (so the vector value is

not arbitrary, as in a computer science pointer).

In previous work, we have used a model of the cortex-

basal ganglia-thalamus loop to control changes to these

semantic pointers (vectors). In (Stewart, Choo, &

Eliasmith, 2014), we showed that a left-corner parser could

be implemented with this loop. However, the approach

taken in this paper is to implement language processing with

a dedicated recurrent network, rather than relying on the

general-purpose (and less neurally efficient) basal ganglia.

It is possible that this sort of system is involved in the

dedicated language-oriented parts of the human brain.

Constraint Satisfaction in Recurrent Networks

Instead of implementing traditional rewrite rule grammars,

as above, another way to think about parsing is that

grammatical knowledge can be represented by a set of

interacting constraints that favor and penalize the co-

occurrence of certain structural features in the representation

of a linguistic expression (Smolensky & Legendre, 2006).

This approach can also be directly mapped into recurrent

biologically plausible networks via the NEF.

To achieve this, we note that a constraint can be thought

of as a bidirectional connection of the form seen in the

distributed parsing model. That is, we can encode each

constraint as a weighted outer product of two vectors

(Smolensky et al., 2013). Then, we construct a

transformation matrix that is sum of the outer products

corresponding to entire collection of constraints under

consideration. If, for example, there was just a positive

constraint between two representations A and B, then the

function the neural network needs to approximate would be:

For more constraints, more outer products would be

summed together. Each of these outer products can be

thought of as a projection matrix that maps an input to a

scaled version of a vector used to define the outer product.

For instance, BAT maps to B scaled by the dot product of

the input x and AT, by virtue of the linearity of matrix

multiplication and the fact that the column-space of BAT is

all scalar multiples of B.

To build a biologically plausible implementation of this

constraint satisfaction network, we use the NEF (Eliasmith

& Anderson, 2003) in the same way as the previous

example. 4000 neurons are configured to represent a 128

dimensional vector, and the NEF is used to find the optimal

set of recurrent synaptic connection weights on all of those

neurons that will best approximate this function.

The result of defining this mapping between the soft

constraints and synaptic weights is that each pattern of

neural activity in the population can be assigned a single

scalar value (i.e. the value of a harmony function;

Smolensky and Legendre, 2006) that reflects the degree to

which the constraints in question are being satisfied. Over

time, the state of the system will gravitate towards a position

that maximizes this value and thereby involves a minimal

degree of constraint violation. In the case that the

constraints correspond to grammatical knowledge, one can

think of this trajectory through the model's state space as a

parallelized execution of the rules defining the grammar.

To test the scalability of this approach to performing

constraint optimization in neural systems, we generate a

vocabulary of 200 representations and generate random all-

to-all constraints between them, yielding a transformation

matrix encoding a total of 40,000 constraints. We then

generate a neural population that computes the function

described by the transformation matrix through its recurrent

connections. Figure 5 depicts the similarity between the

representational state encoded by this population and each

of the 200 representations over time, as a fixed set of

vocabulary items are presented as constant input. The

stability achieved after approximately 300ms indicates that

the system is able to rapidly compute a local solution to the

problem of optimizing all 40,000 constraints.

Figure 5: A recurrent network of 4000 neurons representing

a 128-dimensional vector solving a randomly generated

constraint satisfaction problem. The similarity of the

resulting vector with the 200 basic vectors is shown. The

network settles to a final result after ~300ms.

10

Completing Parse Trees

We can further use this approach to take partial parse trees

and complete them. Given a set of rewrite rules for a

grammar, we can identify grammatical constituents that can

and cannot occur together. These form a set of constraints

on the final vector representation. Traditionally, these

constraints can be seen as connections between localist

nodes. However, as noted in the previous section, these

constraints can again be converted into differential

equations that act on the distributed state vector.

To demonstrate this, consider the following toy grammar:

S → NP, VP S → AUX, NP, VP

NP → DET, N VP → V

VP → V VP → V, NP

After building a network to implement these constraints,

we can present partial tree to the system and it will generate

the correct consistent components for the parse tree. For

example, Figure 6 shows what happens when the input is

the partial tree S(?,NP(DET,?),VP(?,V,?)). The network

successfully identifies the missing components, resulting in

S(AUX,NP(DET,N),VP(V)) as the final parse.

Stability Analysis of a Parser as a Dynamical

System

Given that we use a recurrently connected neural ensemble

to perform constraint satisfaction, we can treat the ensemble

as a dynamical system and do a mathematical analysis of its

behaviour. This behaviour is governed by the linear

transformation matrix, T, where the computed function is

We can factor T into three matrices using eigen-

decomposition:

where S is an matrix whose columns are the eigenvectors of

T, and Λ is a diagonal matrix containing the eigenvalues of

T. Because the eigenvectors in S are orthogonal for

symmetric matrices (and thus form a basis for the vector

space), we can rewrite the starting state of the system as a

linear combination of eigenvectors:

where vi is the ith eigenvector, and ci is a weight on this

vector. This description of the initial condition of the system

allows us to solve for the state of the system at arbitrary

times given that the transform matrix simply scales each of

its eigenvectors by a corresponding eigenvalue. If we treat

the transform as a matrix differential equation (as is

appropriate in the case that the constraint satisfaction

process is implemented in neurons), we can then solve for

the state of the system in the following manner:

As time grows, eigenvectors with negative eigenvalues

will disappear from xt, while those eigenvectors with

positive eigenvalues will exponentially increase;

eigenvectors with an eigenvalue of zero will remain

unchanged in terms of the contribution they make to xt.

Stable states are therefore acquired only when the

transformation matrix has non-positive eigenvalues.

Nonetheless, in the case that the eigenvalues are positive,

Figure 6: Completing a partial tree using grammar constraints encoded as recurrent connections in 4000 LIF neurons. Each

possible grammar structure has its own vector, and the grammatical rules create positive and negative constraints. The input

is the sum of the vectors for S(?,NP(DET,?),?) and S(?,VP(?,V,?)). After ~0.1 seconds, the two vectors for S(AUX,?) and

S(?,NP(?,N),?) start to be represented, resulting in a stable parse of S(AUX,NP(DET,N),VP(V)).

11

the vector describing the system state converges on a

particular direction in the vector space even as it grows

without bound. Of course, when implemented using

neurons with the NEF, this growth in numerical value will

be balanced by the saturation behaviour that occurs when

neurons reach their maximum firing limit.

The motivation for adopting this analysis is that it

illustrates how our system might be harnessed to perform

interesting computations with linguistic applications. In the

case of parsing, the goal is to set the system to an initial

state that encodes a set of words, and then have the

dynamics of the system drive it towards a state that encodes

an optimal parse of these words. The key insight offered by

our analysis is that the representations over which our

constraints are defined can all be represented as linear

combinations of eigenvectors.

As such, we can predict which initial conditions will get

mapped states that have particular degrees of similarity to

the states that define particular representations. We could in

theory choose eigenvalues that perform certain mappings of

interest, and then reconstruct a transformation matrix with

these eigenvalues. Overall, while more needs to be done to

determine how sophisticated grammatical constraints can be

encoded and processed using our recurrent network

architecture, stability analysis of this sort offers a promising

starting point.

Conclusions and Future Directions

Traditionally, grammatical knowledge has been thought of

in terms of a set of fixed production rules that that are used

to generate the sentences of a language. More recently, this

knowledge has instead been characterized in terms of soft

constraints on the well-formedness of linguistic expressions

(Smolensky and Legendre, 2006). Our work suggests that it

is possible to develop this latter approach to the study of

grammatical knowledge in the context of detailed

simulations of neural systems.

In order to extend our work to accommodate more

sophisticated forms of language processing, a few

outstanding problems need to be solved. First, it must

demonstrated that the parsing capabilities of our simple

dynamical systems can scale to more complex grammars.

Second, a better understanding of the dynamic behavior

associated with particular transformation matrices is

required. For example, it might be useful to learn these

matrices from examples of parse trees in much the same

way that supervised learning techniques are used to train

standard feed-forward networks. More generally, it would

be very useful to be able to map desired properties of the

system’s behavior directly onto a set of constraints in a way

that is consistent with what is known about how these

constraints are likely organized.

Limitations aside, there are number of promising

directions in which to extend this work. For example, many

researchers are currently very interested in developing

compositional distributional models of the meanings of

arbitrary linguistic expressions (e.g. Socher et al., 2012).

One possible approach to developing such models involves

performing constraint optimization with recurrent networks

over semantic features in addition to the syntactic features

we are currently examining. Other interesting extensions

involve incorporating hierarchical structure into the neural

systems that perform constraint satisfaction, along with the

incorporation of multiplicative interactions that modify the

transformation matrix and allow the behavior of the

recurrent network to be controlled by an external signal.

Overall, such extensions can help provide insight into the

possible ways in which the sophisticated linguistic

capabilities that are the hallmark of human intelligence are

implemented in neural systems.

Acknowledgments

This work is funded thanks to the Social Sciences and

Humanities Research Council of Canada and the U.S. Office

of Naval Research.

References

Cottrell, G.W. (1985) Connectionist parsing. In Proc. 7th

Annu. Conf. Cogn. Sci. Soc., Erlbaum, 201–211.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering.

Cambridge: MIT Press.

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf,

T., Tang, Y., and Rasmussen, D. (2012). A large-scale

model of the functioning brain. Science, 338:1202-1205.

Eliasmith, C. (2013). How to build a brain. Oxford

University Press, New York, NY.

Gayler, R. (2003). Vector Symbolic Architectures Answer

Jackendoff’s Challenges for Cognitive Neuroscience, in

Slezak, P. (ed). Int. Conference on Cognitive Science,

Sydney: University of New South Wales, 133–138.

Plate, T. (2003). Holographic Reduced Representations, CSLI

Publications, Stanford, CA.

Smolensky, Goldrick, and Mathis (2013). Optimization and

quantization in gradient symbol systems: A framework for

integrating the continuous and the discrete in cognition.

Cognitve Science, 38,6, 1102-1138.

Smolensky, P. and Legendre, G. (2006). The harmonic mind:

From neural computation to optimality-theoretic grammar.

Volumes 1-2. Cambridge MA: MIT Press.

Socher, R., Huval, B., and Ng, A., and Manning, C. (2012).

Semantic compositionality through recursive matrix-vector

spaces. Empirical Methods in Natural Language

Processing.

Stewart, T.C., Choo, X., and Eliasmith, C.. (2014). Sentence

processing in spiking neurons: a biologically plausible left-

corner parser. In 36th Annual Conference of the Cognitive

Science Society, 1533-1538.

Waltz, D. and Pollack, J. (1985). Massively parallel parsing:

A strongly interactive model of natural language

interpretation. Cognitive Science 9, 51–74.

12

